High rate performance of lithium manganese nitride and oxynitride as negative electrodes in lithium batteries

被引:32
|
作者
Cabana, Jordi [2 ]
Ionica-Bousquet, Costana M. [1 ]
Grey, Clare P. [2 ]
Palacin, M. Rosa [1 ]
机构
[1] Inst Ciencia Mat Barcelona ICMAB CSIC, E-08193 Bellaterra, Catalonia, Spain
[2] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA
关键词
Lithium batteries; Lithium manganese nitride and oxynitride; Rate capability; Negative electrodes; LI-ION BATTERIES; ELECTROCHEMICAL PROPERTIES; INSERTION; LI7MNN4; NMR;
D O I
10.1016/j.elecom.2009.12.027
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The performance of Li7.9MnN3.2O1.6 and Li7MnN4 as electrode materials in lithium batteries was analyzed. At 1C rate, capacities of 180 and 230 mAh/g, respectively, were obtained after 50 cycles. If the first charge is done at 0.1C, outstanding capacities of 120-135 mAh/g are observed after 100 cycles at 5C. More lithium can be removed during the charge at 0.1C, leading to a large amount of lithium vacancies that enhance mobility and rate capability. It is proposed that incomplete filling of the vacancies occurs upon cycling, so that the mobility remains high. This performance compares well to that of Li4Ti5O12. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:315 / 318
页数:4
相关论文
共 50 条
  • [21] Nickel nitride as negative electrode material for lithium ion batteries
    Gillot, Frederic
    Oro-Sole, Judith
    Rosa Palacin, M.
    JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (27) : 9997 - 10002
  • [22] Performance and reaction mechanisms of tin compounds as high-capacity negative electrodes of lithium and sodium ion batteries
    Kotaka, Hiroki
    Momida, Hiroyoshi
    Oguchi, Tamio
    MATERIALS ADVANCES, 2022, 3 (06): : 2793 - 2799
  • [23] Burning the mixture of graphene and lithium nitride for high-performance supercapacitor electrodes
    Xie, Kangjun
    Yang, Jun
    Zhang, Quan
    Guo, Huidong
    Hu, Shengwei
    Zeng, Zhijie
    Fang, Xiaoyu
    Xu, Qiang
    Huang, Jiang
    Qi, Wei
    MATERIALS LETTERS, 2017, 195 : 201 - 204
  • [24] Porous silicon based negative electrodes for lithium ion batteries
    Astrova, E. V.
    Fedulova, G. V.
    Smirnova, I. A.
    Remenyuk, A. D.
    Kulova, T. L.
    Skundin, A. M.
    TECHNICAL PHYSICS LETTERS, 2011, 37 (08) : 731 - 734
  • [25] Porous silicon based negative electrodes for lithium ion batteries
    E. V. Astrova
    G. V. Fedulova
    I. A. Smirnova
    A. D. Remenyuk
    T. L. Kulova
    A. M. Skundin
    Technical Physics Letters, 2011, 37 : 731 - 734
  • [26] SECONDARY LITHIUM BATTERIES USING FUSIBLE ALLOY NEGATIVE ELECTRODES
    TOYOGUCHI, Y
    YAMAURA, J
    MATSUI, T
    IIJIMA, T
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1987, 134 (8B) : C407 - C407
  • [27] Negative Electrodes of Lithium Ion Batteries Made from Sugar
    Song Jianlan
    BulletinoftheChineseAcademyofSciences, 2001, (04) : 195 - 196
  • [28] Lithium phosphorous oxynitride as a passive layer for anodes in lithium secondary batteries
    Chung, K
    Kim, WS
    Choi, YK
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2004, 566 (02) : 263 - 267
  • [29] High performance iron-doped lithium manganese phosphate cathode materials for lithium-ion batteries
    Zuo, Pengjian
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 252
  • [30] Synthesis and electrochemical properties of high performance polyhedron sphere like lithium manganese oxide for lithium ion batteries
    Guo, Donglei
    Wei, Xiuge
    Chang, Zhaorong
    Tang, Hongwei
    Li, Bao
    Shangguan, Enbo
    Chang, Kun
    Yuan, Xiao-Zi
    Wang, Haijiang
    JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 632 : 222 - 228