Membrane protein contact and structure prediction using co-evolution in conjunction with machine learning

被引:2
|
作者
Teixeira, Pedro L. [1 ]
Mendenhall, Jeff L. [2 ]
Heinze, Sten [2 ]
Weiner, Brian [2 ]
Skwark, Marcin J. [2 ]
Meiler, Jens [1 ,2 ]
机构
[1] Vanderbilt Univ, Med Ctr, Dept Biomed Informat, Nashville, TN 37235 USA
[2] Vanderbilt Univ, Dept Chem, Ctr Struct Biol, Nashville, TN 37235 USA
来源
PLOS ONE | 2017年 / 12卷 / 05期
基金
美国国家卫生研究院;
关键词
TRANSMEMBRANE PROTEINS; RESIDUE CONTACTS; IDENTIFICATION; SOFTWARE;
D O I
10.1371/journal.pone.0177866
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
De novo membrane protein structure prediction is limited to small proteins due to the conformational search space quickly expanding with length. Long-range contacts (24+ amino acid separation)-residue positions distant in sequence, but in close proximity in the structure, are arguably the most effective way to restrict this conformational space. Inverse methods for co-evolutionary analysis predict a global set of position-pair couplings that best explain the observed amino acid co-occurrences, thus distinguishing between evolutionarily explained co-variances and these arising from spurious transitive effects. Here, we show that applying machine learning approaches and custom descriptors improves evolutionary contact prediction accuracy, resulting in improvement of average precision by 6 percentage points for the top 1L non-local contacts. Further, we demonstrate that predicted contacts improve protein folding with BCL::Fold. The mean RMSD100 metric for the top 10 models folded was reduced by an average of 2 angstrom for a benchmark of 25 membrane proteins.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Co-evolution Transformer for Protein Contact Prediction
    Zhang, He
    Ju, Fusong
    Zhu, Jianwei
    He, Liang
    Shao, Bin
    Zheng, Nanning
    Liu, Tie-Yan
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [2] Improved protein structure prediction by deep learning irrespective of co-evolution information
    Xu, Jinbo
    McPartlon, Matthew
    Li, Jin
    [J]. NATURE MACHINE INTELLIGENCE, 2021, 3 (07) : 601 - +
  • [3] Improved protein structure prediction by deep learning irrespective of co-evolution information
    Jinbo Xu
    Matthew McPartlon
    Jin Li
    [J]. Nature Machine Intelligence, 2021, 3 : 601 - 609
  • [4] Inserting Co-evolution Information from Contact Maps into a Multiobjective Genetic Algorithm for Protein Structure Prediction
    Rocha, Gregorio K.
    dos Santos, Karina B.
    Angelo, Jaqueline S.
    Custodio, Fabio L.
    Barbosa, Helio J. C.
    Dardenne, Laurent E.
    [J]. 2018 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2018, : 957 - 964
  • [5] CopulaNet: Learning residue co-evolution directly from multiple sequence alignment for protein structure prediction
    Ju, Fusong
    Zhu, Jianwei
    Shao, Bin
    Kong, Lupeng
    Liu, Tie-Yan
    Zheng, Wei-Mou
    Bu, Dongbo
    [J]. NATURE COMMUNICATIONS, 2021, 12 (01)
  • [6] CopulaNet: Learning residue co-evolution directly from multiple sequence alignment for protein structure prediction
    Fusong Ju
    Jianwei Zhu
    Bin Shao
    Lupeng Kong
    Tie-Yan Liu
    Wei-Mou Zheng
    Dongbo Bu
    [J]. Nature Communications, 12
  • [7] FreeContact: fast and free software for protein contact prediction from residue co-evolution
    László Kaján
    Thomas A Hopf
    Matúš Kalaš
    Debora S Marks
    Burkhard Rost
    [J]. BMC Bioinformatics, 15
  • [8] FreeContact: fast and free software for protein contact prediction from residue co-evolution
    Kajan, Laszlo
    Hopf, Thomas A.
    Kalas, Matus
    Marks, Debora S.
    Rost, Burkhard
    [J]. BMC BIOINFORMATICS, 2014, 15
  • [9] Improving the quality of co-evolution intermolecular contact prediction with DisVis
    van Keulen, Siri C.
    Bonvin, Alexandre M. J. J.
    [J]. PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2023, 91 (10) : 1407 - 1416
  • [10] Protein contact prediction from amino acid co-evolution using convolutional networks for graph-valued images
    Golkov, Vladimir
    Skwark, Marcin J.
    Golkov, Antonij
    Dosovitskiy, Alexey
    Brox, Thomas
    Meiler, Jens
    Cremers, Daniel
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29