Inserting Co-evolution Information from Contact Maps into a Multiobjective Genetic Algorithm for Protein Structure Prediction

被引:3
|
作者
Rocha, Gregorio K. [1 ]
dos Santos, Karina B. [1 ]
Angelo, Jaqueline S. [1 ]
Custodio, Fabio L. [1 ]
Barbosa, Helio J. C. [1 ,2 ]
Dardenne, Laurent E. [1 ]
机构
[1] MCTIC, LNCC, Petropolis, RJ, Brazil
[2] Univ Fed Juiz De Fora, Juiz De Fora, MG, Brazil
关键词
Protein Structure Prediction; Multiobjective Genetic Algorithm; Residue-Residue Contact Maps; Aggregation Tree; EVOLUTIONARY ALGORITHM; OPTIMIZATION;
D O I
10.1109/CEC.2018.8477890
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Protein structure prediction (PSP) can be described as a multiobjective optimization (MO) problem since the energy function involves potentially conflicting terms to be simultaneously optimized. During the last three CASP editions (10th, 11th, and 12th), promising results were achieved with the introduction of co-evolution information, in the form of residues contact maps, in methodologies for PSP. In this paper, a residue-residue contact map potential is introduced into the evaluation function of the GAPF program, and it is optimized using a MO strategy. The Aggregation Tree (AT) method is applied to group in separated objectives the energetic potentials that compose the GAPF's evaluation function. The results are compared with those obtained from two consolidated PSP methods, QUARK and MEAMT.
引用
收藏
页码:957 / 964
页数:8
相关论文
共 50 条
  • [1] Co-evolution Transformer for Protein Contact Prediction
    Zhang, He
    Ju, Fusong
    Zhu, Jianwei
    He, Liang
    Shao, Bin
    Zheng, Nanning
    Liu, Tie-Yan
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [2] Improved protein structure prediction by deep learning irrespective of co-evolution information
    Xu, Jinbo
    McPartlon, Matthew
    Li, Jin
    [J]. NATURE MACHINE INTELLIGENCE, 2021, 3 (07) : 601 - +
  • [3] Improved protein structure prediction by deep learning irrespective of co-evolution information
    Jinbo Xu
    Matthew McPartlon
    Jin Li
    [J]. Nature Machine Intelligence, 2021, 3 : 601 - 609
  • [4] Membrane protein contact and structure prediction using co-evolution in conjunction with machine learning
    Teixeira, Pedro L.
    Mendenhall, Jeff L.
    Heinze, Sten
    Weiner, Brian
    Skwark, Marcin J.
    Meiler, Jens
    [J]. PLOS ONE, 2017, 12 (05):
  • [5] FreeContact: fast and free software for protein contact prediction from residue co-evolution
    László Kaján
    Thomas A Hopf
    Matúš Kalaš
    Debora S Marks
    Burkhard Rost
    [J]. BMC Bioinformatics, 15
  • [6] FreeContact: fast and free software for protein contact prediction from residue co-evolution
    Kajan, Laszlo
    Hopf, Thomas A.
    Kalas, Matus
    Marks, Debora S.
    Rost, Burkhard
    [J]. BMC BIOINFORMATICS, 2014, 15
  • [7] A Multiobjective Algorithm for Protein Structure Prediction Using Adaptive Differential Evolution
    Scos Venske, Sandra M.
    Goncalves, Richard A.
    Benelli, Elaine M.
    Delgado, Myriam R.
    [J]. 2013 BRAZILIAN CONFERENCE ON INTELLIGENT SYSTEMS (BRACIS), 2013, : 263 - 268
  • [8] Solving the Protein Structure Prediction problem through a multiobjective genetic algorithm
    Day, R.
    Zydallis, J.
    Lamont, G.
    [J]. ICCN 2002: INTERNATIONAL CONFERENCE ON COMPUTATIONAL NANOSCIENCE AND NANOTECHNOLOGY, 2002, : 32 - 35
  • [9] Using Crowding-Distance in a Multiobjective Genetic Algorithm for Protein Structure Prediction
    Rocha, Gregorio Kappaun
    Custodio, Fabio Lima
    Barbosa, Helio J. C.
    Dardenne, Laurent Emmanuel
    [J]. PROCEEDINGS OF THE 2016 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'16 COMPANION), 2016, : 1285 - 1292
  • [10] Improving the quality of co-evolution intermolecular contact prediction with DisVis
    van Keulen, Siri C.
    Bonvin, Alexandre M. J. J.
    [J]. PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2023, 91 (10) : 1407 - 1416