The total face irregularity strength of some plane graphs

被引:0
|
作者
Tilukay, Meilin I. [1 ]
Salman, A. N. M. [2 ]
Ilwaru, Venn Y. I. [1 ]
Rumlawang, F. Y. [1 ]
机构
[1] Univ Pattimura, Dept Math, Jl Ir M Putuhena,Kampus Poka, Ambon 97233, Indonesia
[2] Inst Teknol Bandung, Fac Math & Nat Sci, Combinatorial Math Res Grp, Jalan Ganesa 10, Bandung 40132, Indonesia
关键词
Irregular total labeling; Plane graph; Total face irregularity strength;
D O I
10.1016/j.akcej.2019.05.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A face irregular total k-labeling lambda :VE -> {1,2,...,k} of a 2-connected plane graph G is a labeling of vertices and edges such that their face-weights are pairwise distinct. The weight of a face f under a labeling lambda is the sum of the labels of all vertices and edges surrounding f. The minimum value k for which G has a face irregular total k-labeling is called the total face irregularity strength of G, denoted by tfs(G). The lower bound of tfs(G) is provided along with the exact value of two certain plane graphs. Improving the results, this paper deals with the total face irregularity strength of the disjoint union of multiple copies of a plane graph G. We estimate the bounds of tfs(G) and prove that the lower bound is sharp for G isomorphic to a cycle, a book with m polygonal pages, or a wheel.
引用
收藏
页码:495 / 502
页数:8
相关论文
共 50 条
  • [21] Total Irregularity Strength of Three Families of Graphs
    Ramdani R.
    Salman A.N.M.
    Assiyatun H.
    Semaničová-Feňovčíková A.
    Bača M.
    [J]. Mathematics in Computer Science, 2015, 9 (2) : 229 - 237
  • [22] On total edge irregularity strength of some cactus chain graphs with pendant vertices
    Rosyida, I.
    Indriati, D.
    [J]. 2ND INTERNATIONAL CONFERENCE OF COMBINATORICS, GRAPH THEORY, AND NETWORK TOPOLOGY, 2019,
  • [23] TOTAL VERTEX PRODUCT IRREGULARITY STRENGTH OF GRAPHS
    Anholcer, Marcin
    Emadi, Azam Sadat
    Mojdeh, Doost Ali
    [J]. DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2024, 44 (04) : 1261 - 1276
  • [24] Total edge irregularity strength of large graphs
    Pfender, Florian
    [J]. DISCRETE MATHEMATICS, 2012, 312 (02) : 229 - 237
  • [25] On the total irregularity strength of wheel related graphs
    Jeyanthi, P.
    Sudha, A.
    [J]. UTILITAS MATHEMATICA, 2019, 110 : 131 - 144
  • [26] On Total Edge Irregularity Strength of Staircase Graphs and Related Graphs
    Susanti, Yeni
    Puspitasari, Yulia Indah
    Khotimah, Husnul
    [J]. IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2020, 15 (01): : 1 - 13
  • [27] Entire H-irregularity Strength of Plane Graphs
    Baca, Martin
    Hinding, Nurdin
    Javed, Aisha
    Semanicova-Fenovcikova, Andrea
    [J]. COMBINATORIAL ALGORITHMS, IWOCA 2017, 2018, 10765 : 3 - 12
  • [28] The Minimal Total Irregularity of Some Classes of Graphs
    Zhu, Yingxue
    You, Lihua
    Yang, Jieshan
    [J]. FILOMAT, 2016, 30 (05) : 1203 - 1211
  • [29] The Maximal Total Irregularity of Some Connected Graphs
    Eliasi, M.
    [J]. IRANIAN JOURNAL OF MATHEMATICAL CHEMISTRY, 2015, 6 (02): : 121 - 128
  • [30] Total H-irregularity strength of ladder graphs
    Hinding, Nurdin
    Vega, Elit
    Basir, Hasmawati
    [J]. INTERNATIONAL CONFERENCE ON MATHEMATICS: PURE, APPLIED AND COMPUTATION, 2019, 1218