On the evolution of carry-over effects

被引:58
|
作者
Moore, Michael P. [1 ,2 ]
Martin, Ryan A. [1 ]
机构
[1] Case Western Reserve Univ, Dept Biol, Cleveland, OH 44106 USA
[2] Washington Univ, Living Earth Collaborat, St Louis, MO 63110 USA
关键词
complex life cycles; developmental plasticity; fitness trade-offs; life-history variation; quantitative genetics; CRYPTIC GENETIC-VARIATION; LIFE-HISTORY STAGES; PHENOTYPIC PLASTICITY; DEVELOPMENTAL PLASTICITY; SEXUAL SELECTION; FLUCTUATING SELECTION; QUANTITATIVE GENETICS; COMPENSATORY GROWTH; NATURAL-SELECTION; FITNESS;
D O I
10.1111/1365-2656.13081
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
The environment experienced early in life often affects the traits that are developed after an individual has transitioned into new life stages and environments. Because the phenotypes induced by earlier environments are then screened by later ones, these 'carry-over effects' influence fitness outcomes across the entire life cycle. While the last two decades have witnessed an explosion of studies documenting the occurrence of carry-over effects, little attention has been given to how they adapt and diversify. To aid future research in this area, we present a framework for the evolution of carry-over effects. Carry-over effects can evolve in two ways. First, the expression of traits later in life may become more or less dependent on the developmental processes of earlier stages (e.g., 'adaptive decoupling'). Genetic correlations between life stages then either strengthen or weaken. Alternatively, those influential developmental processes that begin early in life may become more or less sensitive to that earlier environment. Here, plasticity changes in all the traits that share those developmental pathways across the whole life cycle. Adaptive evolution of a carry-over effect is governed by selection on the induced phenotypes in the later stage, and also by selection on any developmentally linked traits in the earlier life stage. When these selective pressures conflict, the evolution of the carry-over effect will be biased towards maximizing performance in the life stage with stronger selection. Because life stages often contribute unequally to total fitness, the strength of selection in any one stage depends on: (a) the relationship between the traits and the stage-specific fitness components (e.g., juvenile survival, adult mating success), and (b) the reproductive value of the life stage. Considering the evolution of carry-over effects reveals several intriguing features of the evolution of life histories and phenotypic plasticity more generally. For instance, carry-over effects that manifest as maladaptive plasticity in one life stage may represent an adaptive strategy for maximizing fitness in stages with stronger selection. Additionally, adaptation to novel environments encountered early in the life cycle may be faster in the presence of carry-over effects that influence sexually selected traits.
引用
收藏
页码:1832 / 1844
页数:13
相关论文
共 50 条
  • [21] Costs of reproduction and carry-over effects in breeding albatrosses
    Crossin, Glenn T.
    Phillips, Richard A.
    Lattin, Christine R.
    Romero, L. Michael
    Bordeleau, Xavier
    Harris, Christopher M.
    Love, Oliver P.
    Williams, Tony D.
    [J]. ANTARCTIC SCIENCE, 2017, 29 (02) : 155 - 164
  • [22] Revisiting the carry-over effects of advertising in franchise industries
    Park, Kwangmin
    Jang, SooCheong
    [J]. INTERNATIONAL JOURNAL OF CONTEMPORARY HOSPITALITY MANAGEMENT, 2016, 28 (04) : 785 - 800
  • [23] Carry-over effects as drivers of fitness differences in animals
    Harrison, Xavier A.
    Blount, Jonathan D.
    Inger, Richard
    Norris, D. Ryan
    Bearhop, Stuart
    [J]. JOURNAL OF ANIMAL ECOLOGY, 2011, 80 (01) : 4 - 18
  • [24] Predicting the consequences of carry-over effects for migratory populations
    Norris, D. Ryan
    Taylor, Caz M.
    [J]. BIOLOGY LETTERS, 2006, 2 (01) : 148 - 151
  • [25] Generalizability of carry-over effects in the emotional Stroop task
    Waters, AJ
    Sayette, MA
    Franken, IHA
    Schwartz, JE
    [J]. BEHAVIOUR RESEARCH AND THERAPY, 2005, 43 (06) : 715 - 732
  • [26] Carry-over effects in sensory evaluation: Case studies
    Gacula, M
    Davis, I
    Hardy, D
    Leiphart, W
    [J]. FECHNER DAY 99: THE END OF 20TH CENTURY PSYCHOPHYSICS, PROCEEDINGS, 1999, : 142 - 147
  • [27] Carry-over effects and habitat quality in migratory populations
    Norris, DR
    [J]. OIKOS, 2005, 109 (01) : 178 - 186
  • [28] MARIJUANA CARRY-OVER EFFECTS ON AIRCRAFT PILOT PERFORMANCE
    LEIRER, VO
    YESAVAGE, JA
    MORROW, DG
    [J]. AVIATION SPACE AND ENVIRONMENTAL MEDICINE, 1991, 62 (03): : 221 - 227
  • [29] Carry-Over Provision Defective
    Swift, James F.
    [J]. TAXES-THE TAX MAGAZINE, 1953, 31 (08): : 667 - 668
  • [30] CARRY-OVER WITH SPEECH PALS
    MARQUARDT, E
    [J]. JOURNAL OF SPEECH AND HEARING DISORDERS, 1959, 24 (02): : 154 - 157