LAPLACIAN SMOOTHING STOCHASTIC GRADIENT MARKOV CHAIN MONTE CARLO

被引:4
|
作者
Wang, Bao [1 ,2 ]
Zou, Difan [3 ]
Gu, Quanquan [3 ]
Osher, Stanley J. [4 ]
机构
[1] Univ Utah, Sci Comp & Imaging Inst, Salt Lake City, UT 84112 USA
[2] Univ Utah, Dept Math, Salt Lake City, UT 84112 USA
[3] Univ Calif Los Angeles, Dept Comp Sci, Los Angeles, CA 90095 USA
[4] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2021年 / 43卷 / 01期
基金
美国国家科学基金会;
关键词
Langevin dynamics; stochastic gradient; Laplacian smoothing; DIFFUSION;
D O I
10.1137/19M1294356
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
As an important Markov chain Monte Carlo (MCMC) method, the stochastic gradient Langevin dynamics (SGLD) algorithm has achieved great success in Bayesian learning and posterior sampling. However, SGLD typically suffers from a slow convergence rate due to its large variance caused by the stochastic gradient. In order to alleviate these drawbacks, we leverage the recently developed Laplacian smoothing technique and propose a Laplacian smoothing stochastic gradient Langevin dynamics (LS-SGLD) algorithm. We prove that for sampling from both log-concave and non-log-concave densities, LS-SGLD achieves strictly smaller discretization error in 2-Wasserstein distance, although its mixing rate can be slightly slower. Experiments on both synthetic and real datasets verify our theoretical results and demonstrate the superior performance of LS-SGLD on different machine learning tasks including posterior sampling, Bayesian logistic regression, and training Bayesian convolutional neural networks. The code is available at https://github.com/BaoWangMath/LS-MCMC.
引用
收藏
页码:A26 / A53
页数:28
相关论文
共 50 条
  • [1] Stochastic Gradient Markov Chain Monte Carlo
    Nemeth, Christopher
    Fearnhead, Paul
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2021, 116 (533) : 433 - 450
  • [2] Image Registration via Stochastic Gradient Markov Chain Monte Carlo
    Grzech, Daniel
    Kainz, Bernhard
    Glocker, Ben
    Le Folgoc, Loic
    [J]. UNCERTAINTY FOR SAFE UTILIZATION OF MACHINE LEARNING IN MEDICAL IMAGING, AND GRAPHS IN BIOMEDICAL IMAGE ANALYSIS, UNSURE 2020, GRAIL 2020, 2020, 12443 : 3 - 12
  • [3] Stochastic Gradient Richardson-Romberg Markov Chain Monte Carlo
    Durmus, Alain
    Simsekli, Umut
    Moulines, Eric
    Badeau, Roland
    Richard, Gael
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [4] sgmcmc: An R Package for Stochastic Gradient Markov Chain Monte Carlo
    Baker, Jack
    Fearnhead, Paul
    Fox, Emily B.
    Nemeth, Christopher
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2019, 91 (03): : 1 - 27
  • [5] Monte Carlo Tennis: A Stochastic Markov Chain Model
    Newton, Paul K.
    Aslam, Kamran
    [J]. JOURNAL OF QUANTITATIVE ANALYSIS IN SPORTS, 2009, 5 (03)
  • [6] A Gradient-Based Blocking Markov Chain Monte Carlo Method for Stochastic Inverse Modeling
    Fu, Jianlin
    Gomez-Hernandez, J. Jaime
    Du, Song
    [J]. GEOSTATISTICS VALENCIA 2016, 2017, 19 : 777 - 788
  • [7] Indirect gradient analysis by Markov-chain Monte Carlo
    Walker, Steven C.
    [J]. PLANT ECOLOGY, 2015, 216 (05) : 697 - 708
  • [8] Gradient-based Adaptive Markov Chain Monte Carlo
    Titsias, Michalis K.
    Dellaportas, Petros
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [9] Indirect gradient analysis by Markov-chain Monte Carlo
    Steven C. Walker
    [J]. Plant Ecology, 2015, 216 : 697 - 708
  • [10] Markov chain Monte Carlo methods for stochastic volatility models
    Chib, S
    Nardari, F
    Shephard, N
    [J]. JOURNAL OF ECONOMETRICS, 2002, 108 (02) : 281 - 316