Formulation of quantum mechanics with dynamical time

被引:2
|
作者
Ivanov, M. G. [1 ]
机构
[1] Moscow Inst Phys & Technol, Inst Skii Per 9, Dolgoprudnyi 141700, Moscow Oblast, Russia
基金
俄罗斯基础研究基金会;
关键词
Wave Function; Quantum Mechanic; Wave Packet; STEKLOV Institute; System Time;
D O I
10.1134/S0081543814040117
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider quantum mechanics for which the system time is one of generalized coordinates. The generalized Hamiltonian has an unbounded spectrum, which allows us to introduce a Hermitian time operator. In the proposed formulation of quantum mechanics, a system time and observer's time are introduced. The Schrodinger equation in the system time either does not hold or holds only approximately. The wave function is assumed to be square integrable with respect to all coordinates, including the system time. In some limit, this formalism reproduces standard quantum mechanics and the corresponding measurement theory.
引用
收藏
页码:145 / 156
页数:12
相关论文
共 50 条
  • [21] A STATIONARY FORMULATION OF TIME-DEPENDENT PROBLEMS IN QUANTUM-MECHANICS
    PFEIFER, P
    LEVINE, RD
    JOURNAL OF CHEMICAL PHYSICS, 1983, 79 (11): : 5512 - 5519
  • [22] THE QUANTUM MECHANICS OF LOCALIZABLE DYNAMICAL SYSTEMS
    CHANG, TS
    PHYSICAL REVIEW, 1950, 78 (05): : 592 - 596
  • [23] Dynamical phase transitions in quantum mechanics
    Rotter, Ingrid
    CNR*11 - THIRD INTERNATIONAL WORKSHOP ON COMPOUND NUCLEAR REACTIONS AND RELATED TOPICS, 2012, 21
  • [24] PROBLEM OF DYNAMICAL GROUPS IN QUANTUM MECHANICS
    SZYMACHA, A
    WERLE, J
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1966, 14 (06): : 325 - &
  • [25] DYNAMICAL SQUEEZING IN QUANTUM-MECHANICS
    GRUBL, G
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (16): : 3243 - 3252
  • [26] QUANTUM MECHANICS FOR CLOSURE OF DYNAMICAL SYSTEMS
    Freeman, David C.
    Giannakis, Dimitrios
    Slawinska, Joanna
    MULTISCALE MODELING & SIMULATION, 2024, 22 (01): : 283 - 333
  • [27] Poisson geometric formulation of quantum mechanics
    Sinha, Pritish
    Yadav, Ankit
    JOURNAL OF MATHEMATICAL PHYSICS, 2024, 65 (06)
  • [28] Quaternionic Formulation of Supersymmetric Quantum Mechanics
    Rawat, Seema
    Negi, O. P. S.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2009, 48 (02) : 305 - 314
  • [29] NEW FORMULATION OF QUANTUM-MECHANICS
    GUDDER, S
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1992, 31 (01) : 15 - 29
  • [30] What is Quantum Mechanics? A Minimal Formulation
    Friedberg, R.
    Hohenberg, P. C.
    FOUNDATIONS OF PHYSICS, 2018, 48 (03) : 295 - 332