Response analysis and comparison of a spar-type floating offshore wind turbine and an onshore wind turbine under blade pitch controller faults

被引:20
|
作者
Etemaddar, Mahmoud [1 ,2 ]
Blanke, Mogens [2 ,3 ,4 ]
Gao, Zhen [1 ,2 ]
Moan, Torgeir [1 ,2 ]
机构
[1] Norwegian Univ Sci & Technol NTNU, Dept Marine Technol, Trondheim, Norway
[2] Norwegian Univ Sci & Technol NTNU, Ctr Ship & Ocean Struct CeSOS, Trondheim, Norway
[3] Tech Univ Denmark DTU, Dept Elect Engn, Automat & Control Grp, Copenhagen, Denmark
[4] NTNU, Inst Tech Cybernet, Ctr Autonomous Marine Operat & Syst AMOS, Copenhagen, Denmark
关键词
spar; floating offshore wind turbine; onshore wind turbine; OC3-Hywind; pitch actuator fault; pitch sensor fault; pitch controller fault; response characteristics; extreme response;
D O I
10.1002/we.1819
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This paper analyses the effects of three pitch system faults on two classes of wind turbines, one is an onshore type and the other a floating offshore spar-type wind turbine. A stuck blade pitch actuator, a fixed value fault and a bias fault in the blade pitch sensor are considered. The effects of these faults are investigated using short-term extreme response analysis with the HAWC2 simulation tool. The main objectives of the paper are to investigate how the different faults affect the performance of wind turbines and which differences exist in the structural responses between onshore and floating offshore wind turbines. Several load cases are covered in a statistical analysis to show the effects of faults at different wind speeds and fault amplitudes. The severity of individual faults is categorized by the extreme values the faults have on structural loads. A pitch sensor stuck is determined as being the most severe case. Comparison between the effects on floating offshore and onshore wind turbines show that in the onshore case the tower, the yaw bearing and the shaft are subjected to the highest risk, whereas in the offshore case, the shaft is in this position. Copyright (C) 2014 John Wiley & Sons, Ltd.
引用
收藏
页码:35 / 50
页数:16
相关论文
共 50 条
  • [21] DYNAMIC RESPONSE OF A SPAR-TYPE FLOATING WIND TURBINE AT POWER GENERATION
    Utsunomiya, Tomoaki
    Yoshida, Shigeo
    Kiyoki, Soichiro
    Sato, Iku
    Lshida, Shigesuke
    33RD INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, 2014, VOL 7: OCEAN SPACE UTILIZATION, 2014,
  • [22] A Numerical Prediction on the Transient Response of a Spar-Type Floating Offshore Wind Turbine in Freak Waves
    Li, Yan
    Qu, Xiaoqi
    Liu, Liqin
    Xie, Peng
    Yin, Tianchang
    Tang, Yougang
    JOURNAL OF OFFSHORE MECHANICS AND ARCTIC ENGINEERING-TRANSACTIONS OF THE ASME, 2020, 142 (06):
  • [23] Dynamic response of floating substructure of spar-type offshore wind turbine with catenary mooring cables
    Jeon, S. H.
    Cho, Y. U.
    Seo, M. W.
    Cho, J. R.
    Jeong, W. B.
    OCEAN ENGINEERING, 2013, 72 : 356 - 364
  • [24] Coupled Dynamic Response on a 6 MW Spar-Type Floating Offshore Wind Turbine Under Extreme Conditions
    Yang J.
    He Y.
    Meng L.
    Zhao Y.
    Wu H.
    Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University, 2021, 55 (01): : 21 - 31
  • [25] Wind-wave induced dynamic response analysis for motions and mooring loads of a spar-type offshore floating wind turbine
    Yu Ma
    Zhi-qiang Hu
    Long-fei Xiao
    Journal of Hydrodynamics, 2014, 26 : 865 - 874
  • [26] Wind-wave induced dynamic response analysis for motions and mooring loads of a spar-type offshore floating wind turbine
    马钰
    胡志强
    肖龙飞
    JournalofHydrodynamics, 2014, 26 (06) : 865 - 874
  • [27] Wind-wave induced dynamic response analysis for motions and mooring loads of a spar-type offshore floating wind turbine
    Ma Yu
    Hu Zhi-qiang
    Xiao Long-fei
    JOURNAL OF HYDRODYNAMICS, 2014, 26 (06) : 865 - 874
  • [28] Accounting for Hydroelasticity in the Analysis of Offshore Wind Turbine Spar-Type Platforms
    Mantadakis, Nikos
    Loukogeorgaki, Eva
    Karimirad, Madjid
    INTERNATIONAL JOURNAL OF OFFSHORE AND POLAR ENGINEERING, 2021, 31 (01) : 121 - 128
  • [29] Numerical modeling and hydrodynamic response analysis of spar-type floating offshore wind turbine integrated with aquaculture cage
    Ma, Yong
    Tan, Qiutong
    Zhu, Yuanyao
    Hu, Chao
    OCEAN ENGINEERING, 2025, 318
  • [30] Coupled dynamic analysis of spar-type floating wind turbine under different wind and wave loading
    Rony J.S.
    Karmakar D.
    Soares C.G.
    Marine Systems and Ocean Technology, 2021, 16 (3-4) : 169 - 198