Chlorophyll content estimation in arid grasslands from Landsat-8 OLI data

被引:24
|
作者
Yin, Changming [1 ]
He, Binbin [1 ]
Quan, Xingwen [1 ]
Liao, Zhanmang [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Resources & Environm, Chengdu 611731, Peoples R China
基金
中国国家自然科学基金;
关键词
LEAF-AREA INDEX; HYPERSPECTRAL VEGETATION INDEXES; RADIATIVE-TRANSFER MODEL; REMOTE-SENSING DATA; BIDIRECTIONAL REFLECTANCE; NONDESTRUCTIVE ESTIMATION; OPTICAL-PROPERTIES; INVERSION METHODS; CANOPY; LAI;
D O I
10.1080/01431161.2015.1131867
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
In this study, an arid grassland was selected, and the chlorophyll content of the leaf and canopy level was estimated based on Landsat-8 Operational Land Imager (OLI) data using the PROSAIL radiative transfer (RT) model. Two vegetation indices (green chlorophyll index, CIgreen, and greenness index, G) were selected to estimate the leaf and canopy chlorophyll content (LCC and CCC). By analysing the effect of soil background on the two indices, the LCC was divided into low and moderate-to-high levels. A different combination of the two indices was adopted at each level to improve the chlorophyll content estimation accuracy. The results suggested that the chlorophyll content estimated using the proposed method yielded a higher accuracy with coefficient of determination, R-2=0.84, root-mean-square error, RMSE=9.67 g cm(-2) for LCC and R-2=0.85, RMSE=0.43g m(-2) for CCC than that using CIgreen alone with R-2=0.62, RMSE=20.04 g cm(-2) for LCC and R-2=0.85, RMSE=0.71g m(-2) for CCC. The results also confirmed the validity of this approach to estimate the chlorophyll content in arid areas.
引用
收藏
页码:615 / 632
页数:18
相关论文
共 50 条
  • [11] Removal of Thin Clouds in Landsat-8 OLI Data with Independent Component Analysis
    Shen, Yang
    Wang, Yong
    Lv, Haitao
    Qian, Jiang
    REMOTE SENSING, 2015, 7 (09): : 11481 - 11500
  • [12] Estimation of Chlorophyll-a in Northern Coastal Bay of Bengal Using Landsat-8 OLI and Sentinel-2 MSI Sensors
    Poddar, Shukla
    Chacko, Neethu
    Swain, Debadatta
    FRONTIERS IN MARINE SCIENCE, 2019, 6
  • [13] Conjunctive Use of Landsat-8 OLI and MODIS Data for Delineation of Burned Areas
    Azeemuddin, Syed
    Dwivedi, R. S.
    PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2022, 88 (06): : 407 - 413
  • [14] Modeling chlorophyll-a and turbidity concentrations in river Ganga (India) using Landsat-8 OLI imagery
    Prasad, Satish
    Saluja, Ridhi
    Garg, J. K.
    EARTH RESOURCES AND ENVIRONMENTAL REMOTE SENSING/GIS APPLICATIONS VIII, 2017, 10428
  • [15] An Enhanced Algorithm for Active Fire Detection in Croplands Using Landsat-8 OLI Data
    Jiang, Yizhu
    Kong, Jinling
    Zhong, Yanling
    Zhang, Qiutong
    Zhang, Jingya
    LAND, 2023, 12 (06)
  • [16] Estimation of chlorophyll‐a concentration and trophic states in Nalban Lake of East Kolkata Wetland, India from Landsat 8 OLI data
    Patra P.P.
    Dubey S.K.
    Trivedi R.K.
    Sahu S.K.
    Rout S.K.
    Spatial Information Research, 2017, 25 (1) : 75 - 87
  • [17] Estimation of Trophic State Index of Chilika Lake using Landsat-8 OLI and LISS-III satellite data
    Kumar Jally, Sujit
    Kumar Mishra, Akhila
    Balabantaray, Sachikanta
    GEOCARTO INTERNATIONAL, 2020, 35 (07) : 759 - 780
  • [18] Estimation of land surface temperature from Landsat-8 OLI: comparative analysis of two periods for Duzce in Turkey
    A. S. Değermenci
    International Journal of Environmental Science and Technology, 2024, 21 : 6389 - 6404
  • [20] Remote Estimation of Trophic State Index for Inland Waters Using Landsat-8 OLI Imagery
    Hu, Minqi
    Ma, Ronghua
    Cao, Zhigang
    Xiong, Junfeng
    Xue, Kun
    REMOTE SENSING, 2021, 13 (10)