Microbial NAD Metabolism: Lessons from Comparative Genomics

被引:160
|
作者
Gazzaniga, Francesca [2 ,3 ,4 ]
Stebbins, Rebecca [2 ,3 ,4 ]
Chang, Sheila Z. [2 ,3 ,4 ]
McPeek, Mark A. [4 ]
Brenner, Charles [1 ,2 ,3 ]
机构
[1] Univ Iowa, Carver Coll Med, Dept Biochem, Iowa City, IA 52242 USA
[2] Dartmouth Med Sch, Dept Biochem & Genet, Lebanon, NH 03756 USA
[3] Dartmouth Med Sch, Norris Cotton Canc Ctr, Lebanon, NH 03756 USA
[4] Dartmouth Coll, Dept Biol Sci, Hanover, NH 03755 USA
基金
美国国家科学基金会;
关键词
NICOTINAMIDE MONONUCLEOTIDE ADENYLYLTRANSFERASE; L-ASPARTATE OXIDASE; ESCHERICHIA-COLI; DIPHOSPHOPYRIDINE NUCLEOTIDE; HAEMOPHILUS-INFLUENZAE; MYCOBACTERIUM-TUBERCULOSIS; TRANSCRIPTIONAL REGULATION; NMN ADENYLYLTRANSFERASE; CRYSTAL-STRUCTURE; IDENTIFICATION;
D O I
10.1128/MMBR.00042-08
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
NAD is a coenzyme for redox reactions and a substrate of NAD-consuming enzymes, including ADP-ribose transferases, Sir2-related protein lysine deacetylases, and bacterial DNA ligases. Microorganisms that synthesize NAD from as few as one to as many as five of the six identified biosynthetic precursors have been identified. De novo NAD synthesis from aspartate or tryptophan is neither universal nor strictly aerobic. Salvage NAD synthesis from nicotinamide, nicotinic acid, nicotinamide riboside, and nicotinic acid riboside occurs via modules of different genes. Nicotinamide salvage genes nadV and pncA, found in distinct bacteria, appear to have spread throughout the tree of life via horizontal gene transfer. Biochemical, genetic, and genomic analyses have advanced to the point at which the precursors and pathways utilized by a microorganism can be predicted. Challenges remain in dissecting regulation of pathways.
引用
收藏
页码:529 / +
页数:14
相关论文
共 50 条
  • [1] Comparative genomics: lessons from cats
    OBrien, SJ
    Wienberg, J
    Lyons, LA
    [J]. TRENDS IN GENETICS, 1997, 13 (10) : 393 - 399
  • [2] NAD+ Metabolism and Regulation: Lessons From Yeast
    Croft, Trevor
    Venkatakrishnan, Padmaja
    Lin, Su-Ju
    [J]. BIOMOLECULES, 2020, 10 (02)
  • [3] Lessons from molecular epidemiology and comparative genomics
    Mathema, Barun
    Kurepina, Natalia
    Fallows, Dorothy
    Kreiswirth, Barry N.
    [J]. SEMINARS IN RESPIRATORY AND CRITICAL CARE MEDICINE, 2008, 29 (05) : 467 - 480
  • [4] Comparative genomics of NAD biosynthesis in cyanobacteria
    Gerdes, SY
    Kurnasov, OV
    Shatalin, K
    Polanuyer, B
    Sloutsky, R
    Vonstein, V
    Overbeek, R
    Osterman, AL
    [J]. JOURNAL OF BACTERIOLOGY, 2006, 188 (08) : 3012 - 3023
  • [5] Rapid microbial comparative genomics
    McCormick, MR
    Albert, TJ
    [J]. GENETIC ENGINEERING NEWS, 2005, 25 (10): : 30 - +
  • [6] Comparative Microbial Genomics and Forensics
    Massey, Steven E.
    [J]. MICROBIOLOGY SPECTRUM, 2016, 4 (04):
  • [7] Reductive dehalogenation of chloroethenes: Lessons learnt from comparative genomics
    Spormann, Alfred M.
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 243
  • [8] Comparative genomics and understanding of microbial biology
    Fraser, CM
    Eisen, J
    Fleischmann, RD
    Ketchum, KA
    Peterson, S
    [J]. EMERGING INFECTIOUS DISEASES, 2000, 6 (05) : 505 - 512
  • [9] Comparative genomics of microbial pathogens and symbionts
    Andersson, SGE
    Alsmark, C
    Canbäck, B
    Davids, W
    Frank, C
    Karlberg, O
    Klasson, L
    Antoine-Legault, B
    Mira, A
    Tamas, I
    [J]. BIOINFORMATICS, 2002, 18 : S17 - S17
  • [10] Lessons from Genomics
    Alberts, Bruce
    [J]. SCIENCE, 2011, 331 (6017) : 511 - 511