Optimally regularised kernel Fisher discriminant analysis

被引:5
|
作者
Saadi, K [1 ]
Talbot, NLC [1 ]
Cawley, GC [1 ]
机构
[1] Univ E Anglia, Sch Comp Sci, Norwich NR4 7TJ, Norfolk, England
关键词
D O I
10.1109/ICPR.2004.1334245
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Mika et al. [3] introduce a non-linear formulation of Fisher's linear discriminant, based the now familiar "kernel trick", demonstrating state-of-the-art performance on a wide range of real-world benchmark datasets. In this paper we show that the usual regularisation parameter can be adjusted so as to minimise the leave-one-out cross-validation error with a computational complexity of only O(l(4)) operations, where e is the number of training patterns, rather than the O(l(4)) operations required for a naive implementation of the leave-one-out procedure. This procedure is then used to form a component of an efficient heirarchical model selection strategy where the regularisation parameter is optimised within the inner loop while the kernel parameters are optimised in the outer loop.
引用
收藏
页码:427 / 430
页数:4
相关论文
共 50 条
  • [21] Input variable selection in kernel Fisher discriminant analysis
    Louw, N
    Steel, SJ
    [J]. FROM DATA AND INFORMATION ANALYSIS TO KNOWLEDGE ENGINEERING, 2006, : 126 - +
  • [22] Fast kernel Fisher discriminant analysis via approximating the kernel principal component analysis
    Wang, Jinghua
    Li, Qin
    You, Jane
    Zhao, Qijun
    [J]. NEUROCOMPUTING, 2011, 74 (17) : 3313 - 3322
  • [23] On the equivalence of Kernel Fisher discriminant analysis and Kernel Quadratic Programming Feature Selection
    Rodriguez-Lujan, I.
    Santa Cruz, C.
    Huerta, R.
    [J]. PATTERN RECOGNITION LETTERS, 2011, 32 (11) : 1567 - 1571
  • [24] Face recognition using Kernel based Fisher discriminant analysis
    Liu, QS
    Huang, R
    Lu, HQ
    Ma, SD
    [J]. FIFTH IEEE INTERNATIONAL CONFERENCE ON AUTOMATIC FACE AND GESTURE RECOGNITION, PROCEEDINGS, 2002, : 197 - 201
  • [25] Palmprint recognition based on kernel localized Fisher discriminant analysis
    Guo, Jin-Yu
    Liu, Yu-Qin
    Yuan, Wei-Qi
    [J]. Guangdianzi Jiguang/Journal of Optoelectronics Laser, 2012, 23 (02): : 354 - 358
  • [26] Multiple Kernel Learning in Fisher Discriminant Analysis for Face Recognition
    Liu, Xiao-Zhang
    Feng, Guo-Can
    [J]. INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS, 2013, 10
  • [27] Multiple kernel local Fisher discriminant analysis for face recognition
    Wang, Ziqiang
    Sun, Xia
    [J]. SIGNAL PROCESSING, 2013, 93 (06) : 1496 - 1509
  • [28] An efficient and effective method to solve kernel - Fisher discriminant analysis
    Liang, ZZ
    Shi, PF
    [J]. NEUROCOMPUTING, 2004, 61 (1-4) : 485 - 493
  • [29] A kernel-based fisher discriminant analysis for face detection
    Kurita, T
    Taguchi, T
    [J]. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2005, E88D (03): : 628 - 635
  • [30] Determine the parameter of kernel discriminant analysis in accordance with fisher criterion
    Xu, Yong
    Li, Wei-Jie
    [J]. PROCEEDINGS OF 2007 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2007, : 2931 - 2935