elliptic system;
estimates;
energy functional;
LAYER SOLUTIONS;
EXISTENCE;
PEAKS;
SHAPE;
D O I:
10.1186/1687-2770-2013-194
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We consider an elliptic system of the form -epsilon(2) Delta u + u = f (v), -epsilon(2) Delta v + v = g(u) in Omega with Neumann boundary conditions, where Omega is a C-2 domain in R-N,f and g are nonlinearities having superlinear and subcritical growth at infinity. We prove the existence of nonconstant positive solutions of the system, and estimate the energy functional on a configuration space (H) over bar by a different technique, which is an important step in the proof of the solution's concentrative property. We conclude that the least energy solutions of the system concentrate at the point of boundary, which maximizes the mean curvature of partial derivative Omega.
机构:
Univ Messina, Dept Sci Engn & Architecture, Math Sect, Fac Engn, I-98166 Messina, ItalyUniv Messina, Dept Sci Engn & Architecture, Math Sect, Fac Engn, I-98166 Messina, Italy
Bonanno, Gabriele
Bisci, Giovanni Molica
论文数: 0引用数: 0
h-index: 0
机构:
Univ Reggio Calabria, Dipartimento MECMAT, I-89124 Reggio Di Calabria, ItalyUniv Messina, Dept Sci Engn & Architecture, Math Sect, Fac Engn, I-98166 Messina, Italy
Bisci, Giovanni Molica
Radulescu, Vicentiu D.
论文数: 0引用数: 0
h-index: 0
机构:
Romanian Acad, Inst Math Simion Stoilow, Bucharest 014700, Romania
Univ Craiova, Dept Math, Craiova 200585, RomaniaUniv Messina, Dept Sci Engn & Architecture, Math Sect, Fac Engn, I-98166 Messina, Italy
机构:
Univ Bundeswehr Munchen, Werner Heisenberg Weg 39, D-85577 Neubiberg, GermanyUniv Bundeswehr Munchen, Werner Heisenberg Weg 39, D-85577 Neubiberg, Germany
Apel, Thomas
Steinbach, Olaf
论文数: 0引用数: 0
h-index: 0
机构:
Graz Univ Technol, Steyrergasse 30, A-8010 Graz, AustriaUniv Bundeswehr Munchen, Werner Heisenberg Weg 39, D-85577 Neubiberg, Germany
Steinbach, Olaf
Winkler, Max
论文数: 0引用数: 0
h-index: 0
机构:
Univ Bundeswehr Munchen, Werner Heisenberg Weg 39, D-85577 Neubiberg, GermanyUniv Bundeswehr Munchen, Werner Heisenberg Weg 39, D-85577 Neubiberg, Germany