A hysteretic multiscale formulation for nonlinear dynamic analysis of composite materials

被引:15
|
作者
Triantafyllou, S. P. [1 ]
Chatzi, E. N. [2 ]
机构
[1] Brunel Univ, Sch Engn & Design, Uxbridge UB8 3PH, Middx, England
[2] ETH, Inst Struct Engn, CH-8093 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
Heterogeneous materials; Multiscale finite elements; Hysteresis; Nonliner dynamics; FINITE-ELEMENT-METHOD; ELASTOPLASTIC ANALYSIS; EXPLICIT INTEGRATION; MECHANICAL ANALYSIS; ELLIPTIC PROBLEMS; HOMOGENIZATION; MODEL; BEHAVIOR; IDENTIFICATION; PERFORMANCE;
D O I
10.1007/s00466-014-1032-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A new multiscale finite element formulation is presented for nonlinear dynamic analysis of heterogeneous structures. The proposed multiscale approach utilizes the hysteretic finite element method to model the micro-structure. Using the proposed computational scheme, the micro-basis functions, that are used to map the micro-displacement components to the coarse mesh, are only evaluated once and remain constant throughout the analysis procedure. This is accomplished by treating inelasticity at the micro-elemental level through properly defined hysteretic evolution equations. Two types of imposed boundary conditions are considered for the derivation of the multiscale basis functions, namely the linear and periodic boundary conditions. The validity of the proposed formulation as well as its computational efficiency are verified through illustrative numerical experiments.
引用
收藏
页码:763 / 787
页数:25
相关论文
共 50 条
  • [31] A simplified model for hysteretic nonlinear dynamic response analysis of concrete covering grouting
    Chen, Juan
    Xu, Lisheng
    Zhang, Fan
    Xu, Meng
    [J]. Journal of Engineering Science and Technology Review, 2014, 7 (02) : 152 - 157
  • [32] Adjoint sensitivity analysis and optimization of hysteretic dynamic systems with nonlinear viscous dampers
    Pollini, Nicolo
    Lavan, Oren
    Amir, Oded
    [J]. STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2018, 57 (06) : 2273 - 2289
  • [33] Nonlinear wave propagation in damaged hysteretic materials using a frequency domain-based PM space formulation
    Barbieri, E.
    Meo, M.
    Polimeno, U.
    [J]. INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2009, 46 (01) : 165 - 180
  • [34] Computationally Efficient Concurrent Multiscale Framework for the Nonlinear Analysis of Composite Structures
    Kaleel, I
    Petrolo, M.
    Carrera, E.
    Waas, A. M.
    [J]. AIAA JOURNAL, 2019, 57 (09) : 4029 - 4041
  • [35] FORMULATION OF COMPOSITE FILLING MATERIALS
    BRADEN, M
    [J]. OPERATIVE DENTISTRY, 1978, 3 (03) : 97 - 102
  • [36] Dynamic analysis of walls strengthened with composite materials
    Elmalich, Dvir
    Rabinovitch, Oded
    [J]. COMPOSITE STRUCTURES, 2012, 94 (07) : 2157 - 2173
  • [37] Nonlinear multiscale modeling of polymer materials
    Valavala, P. K.
    Clancy, T. C.
    Odegard, G. M.
    Gates, T. S.
    [J]. INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2007, 44 (3-4) : 1161 - 1179
  • [38] Multiscale asymptotic homogenization analysis of thermo-diffusive composite materials
    Bacigalupo, A.
    Morini, L.
    Piccolroaz, A.
    [J]. INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2016, 85-86 : 15 - 33
  • [39] MULTISCALE PROGRESSIVE FAILURE ANALYSIS OF PLAIN-WOVEN COMPOSITE MATERIALS
    Raimondo, L.
    Aliabadi, M. H.
    [J]. JOURNAL OF MULTISCALE MODELLING, 2009, 1 (02) : 263 - 301
  • [40] Multiscale model and algorithm for elasto-plastic analysis of composite materials
    State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China
    [J]. Guti Lexue Xuebao, 2007, 1 (7-12):