Gradient estimates for a nonlinear parabolic equation on smooth metric measure spaces

被引:10
|
作者
Yang, Fei [1 ]
Zhang, Liangdi [2 ]
机构
[1] China Univ Geosci, Sch Math & Phys, Wuhan 430074, Hubei, Peoples R China
[2] Zhejiang Univ, Ctr Math Sci, Hangzhou 310027, Zhejiang, Peoples R China
关键词
Gradient estimates; Harnack inequality; Nonlinear parabolic equation; Smooth metric measure space; THEOREM; KERNEL;
D O I
10.1016/j.na.2019.03.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (M-n, g, e(-phi dv)) be a smooth metric measure space. In this paper, we derive a series of gradient estimates and a Harnack inequality for positive solutions of a nonlinear parabolic partial differential equation (Delta(phi) - partial derivative(t))u = qu + au(ln u)(alpha) in M-n x (-infinity,+infinity), where q is an element of C-2,C-1 (M-n x (-infinity,+infinity)) and a, a is an element of R. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:49 / 70
页数:22
相关论文
共 50 条