Existence of rational points on smooth projective varieties

被引:0
|
作者
Poonen, Bjorn [1 ]
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
关键词
Brauer-Manin obstruction; Hasse principle; Chatelet surface; conic bundle; rational points; HILBERTS 10TH PROBLEM; CHATELET SURFACES; FUNCTION-FIELDS; QUADRICS; CHARACTERISTIC-2; INTERSECTIONS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Fix a number field k. We prove that if there is an algorithm for deciding whether a smooth projective geometrically integral k-variety has a k-point, then there is an algorithm for deciding whether an arbitrary k-variety has a k-point and also an algorithm for computing X(k) for any k-variety X for which X(k) is finite. The proof involves the construction of a one-parameter algebraic family of Chatelet surfaces such that exactly one of the surfaces fails to have a k-point.
引用
收藏
页码:529 / 543
页数:15
相关论文
共 50 条
  • [21] Rational points on certain homogeneous varieties
    Pengyu Yang
    European Journal of Mathematics, 2023, 9
  • [22] Rational points and cohomology of discriminant varieties
    Lehrer, GI
    ADVANCES IN MATHEMATICS, 2004, 186 (01) : 229 - 250
  • [23] Counting rational points on algebraic varieties
    Heath-Brown, D. R.
    ANALYTIC NUMBER THEORY, 2006, 1891 : 51 - 95
  • [24] Logarithms of rational points of Abelian varieties
    Bosser, Vincent
    Gaudron, Eric
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2019, 71 (02): : 247 - 298
  • [25] Counting rational points on algebraic varieties
    Browning, TD
    Heath-Brown, DR
    Salberger, P
    DUKE MATHEMATICAL JOURNAL, 2006, 132 (03) : 545 - 578
  • [26] APPROXIMATING RATIONAL POINTS ON TORIC VARIETIES
    McKinnon, David
    Satriano, Matthew
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 374 (05) : 3557 - 3577
  • [27] Varieties with too many rational points
    T. D. Browning
    D. Loughran
    Mathematische Zeitschrift, 2017, 285 : 1249 - 1267
  • [28] Notes on the rational points of Fermat varieties
    Bernardi, D
    Halberstadt, E
    Kraus, A
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2003, 46 (01): : 26 - 38
  • [29] Rational points on certain homogeneous varieties
    Yang, Pengyu
    EUROPEAN JOURNAL OF MATHEMATICS, 2023, 9 (01)
  • [30] Varieties with too many rational points
    Browning, T. D.
    Loughran, D.
    MATHEMATISCHE ZEITSCHRIFT, 2017, 285 (3-4) : 1249 - 1267