Application of stepwise regression for dynamic parameter estimation

被引:18
|
作者
Shacham, Moedechai [1 ]
Brauner, Neima [2 ]
机构
[1] Ben Gurion Univ Negev, Dept Chem Engn, IL-84105 Beer Sheva, Israel
[2] Tel Aviv Univ, Sch Engn, IL-69978 Tel Aviv, Israel
关键词
Stepwise regression; Dynamic parameter estimation; Regression analysis; ORDINARY DIFFERENTIAL-EQUATIONS; KINETIC-MODEL; GLOBAL OPTIMIZATION; SYSTEMS; IDENTIFIABILITY; IDENTIFICATION; HYDROLYSIS; VALIDATION; BIOMASS;
D O I
10.1016/j.compchemeng.2014.06.013
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Dynamic parameter estimation in cases where it may be impossible to identify all the model parameters is considered. The objective is to obtain reliable estimates to the maximal number of physical parameters in a stable regression model where the modeling of the noise in the data is avoided. The modifications required in the stepwise regression algorithm to accommodate various nonlinear terms in the regression model are investigated and a new algorithm is presented. The algorithm considers the hierarchy among the parameters, the initial trends of the experimental data curves and the initial values of the state variables in order to establish a minimal initial set of parameters to be included in the model. Additional parameters are then added in a stepwise manner, while considering the hierarchy of the parameters and the associated reduction of the objective function value. The process continues as long as significant and physically feasible values for the parameters are obtained. The new method is demonstrated with several examples from the literature. Additional issues investigated include the proper combination of the simultaneous and sequential solution methods in the stepwise regression algorithm, the preferred method for the estimation of the derivatives and the effect of variable scaling. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:26 / 38
页数:13
相关论文
共 50 条
  • [21] A stepwise parameter estimation strategy for equipment performance degradation monitoring
    Shen X.
    Li H.
    Chen W.
    Tao J.
    Zhu L.
    Gao Xiao Hua Xue Gong Cheng Xue Bao/Journal of Chemical Engineering of Chinese Universities, 2024, 38 (02): : 294 - 301
  • [22] Estimation of the regularization parameter for support vector regression
    Jordaan, EM
    Smits, GF
    PROCEEDING OF THE 2002 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-3, 2002, : 2192 - 2197
  • [23] ESTIMATION OF THE NUISANCE PARAMETER FOR A SEMIMARTINGALE REGRESSION MODEL
    潘一民
    罗少波
    Acta Mathematicae Applicatae Sinica(English Series), 1991, (01) : 1 - 5
  • [24] RIDGE REGRESSION ITERATIVE ESTIMATION OF BIASING PARAMETER
    HOERL, AE
    KENNARD, RW
    COMMUNICATIONS IN STATISTICS PART A-THEORY AND METHODS, 1976, A 5 (01): : 77 - 88
  • [25] Parameter estimation of regression model with quantized variables
    Dvorak, Marek
    Fiala, Petr
    MATHEMATICAL METHODS IN ECONOMICS (MME 2018), 2018, : 76 - 80
  • [26] REGRESSION PARAMETER-ESTIMATION AS A MULTICRITERION PROBLEM
    KORKHIN, AS
    AUTOMATION AND REMOTE CONTROL, 1992, 53 (09) : 1403 - 1409
  • [27] Parameter estimation in optional semimartingale regression models
    Melnikov, Alexander
    Pak, Andrey
    STATISTICS, 2023, 57 (05) : 1165 - 1201
  • [28] Bayesian estimation of the shrinkage parameter in ridge regression
    Firinguetti-Limone, Luis
    Pereira-Barahona, Manuel
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2020, 49 (12) : 3314 - 3327
  • [29] Efficient parameter estimation in regression with missing responses
    Mueller, Ursula U.
    Van Keilegom, Ingrid
    ELECTRONIC JOURNAL OF STATISTICS, 2012, 6 : 1200 - 1219
  • [30] Robust logistic regression with shift parameter estimation
    Shin, Bokyoung
    Lee, Seokho
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2023, 93 (15) : 2625 - 2641