Multiple-Input Deep Convolutional Neural Network Model for Short-Term Photovoltaic Power Forecasting

被引:150
|
作者
Huang, Chiou-Jye [1 ]
Kuo, Ping-Huan [2 ]
机构
[1] Jiangxi Univ Sci & Technol, Sch Elect Engn & Automat, Gauzhou 341000, Peoples R China
[2] Natl Pingtung Univ, Comp & Intelligent Robot Program Bachelor Degree, Pingtung 90004, Taiwan
来源
IEEE ACCESS | 2019年 / 7卷
关键词
Deep neural network; photovoltaic output power forecasting; photovoltaic system; renewable energy sources; SUPPORT VECTOR MACHINE; OUTPUT POWER; SOLAR; GENERATION; SVM;
D O I
10.1109/ACCESS.2019.2921238
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the fast expansion of renewable energy system installed capacity in recent years, the availability, stability, and quality of smart grids have become increasingly important. The renewable energy output forecasting applications have also been developing rapidly in recent years, and such techniques have particularly been applied in the fields of wind and solar photovoltaic (PV). In the case of solar PV output forecasting, many applications have been performed with machine learning and hybrid techniques. In this paper, we propose a high-precision deep neural network model named PVPNet to forecast PV system output power. The methodology behind the proposed model is based on deep neural networks, and the model is able to generate a 24-h probabilistic and deterministic forecasting of PV power output based on meteorological information, such as temperature, solar radiation, and historical PV system output data. The forecasting accuracy of PVPNet is determined by the mean absolute error (MAE) and root mean square error (RMSE) values. The results from the experiments show that the MAE and RMSE of the proposed algorithm are 109.4845 and 163.1513, respectively. The results prove that the prediction accuracy of the PVPNet outperforms other benchmark models, and the algorithm also effectively predicts complex time series with a high degree of volatility and irregularity.
引用
下载
收藏
页码:74822 / 74834
页数:13
相关论文
共 50 条
  • [21] Short-term photovoltaic power forecasting based on multiple mode decomposition and parallel bidirectional long short term combined with convolutional neural networks
    Liu, Qian
    Li, Yulin
    Jiang, Hang
    Chen, Yilin
    Zhang, Jiang
    ENERGY, 2024, 286
  • [22] SHORT-TERM PHOTOVOLTAIC POWER FORECASTING BASED ON MULTIVARIATE VARIATIONAL MODE DECOMPOSITION AND HYBRID DEEP NEURAL NETWORK
    Guo W.
    Sun S.
    Tao P.
    Xu J.
    Bai X.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2024, 45 (04): : 489 - 499
  • [23] A multiple-input deep residual convolutional neural network for reservoir permeability prediction
    Masroor, Milad
    Niri, Mohammad Emami
    Sharifinasab, Mohammad Hassan
    GEOENERGY SCIENCE AND ENGINEERING, 2023, 222
  • [24] Short-Term Forecasting of Photovoltaic Power Using Multilayer Perceptron Neural Network, Convolutional Neural Network, and k-Nearest Neighbors' Algorithms
    Iheanetu, Kelachukwu
    Obileke, KeChrist
    OPTICS, 2024, 5 (02): : 293 - 309
  • [25] Short-Term Active Power Forecasting of a Photovoltaic Power Plant using an Artificial Neural Network
    Romero, Andres F.
    Quilumba, Franklin L.
    Arcos, Hugo N.
    2017 IEEE SECOND ECUADOR TECHNICAL CHAPTERS MEETING (ETCM), 2017,
  • [26] Short-term solar power forecasting based on convolutional neural network and analytical knowledge
    Zhou, Yangjun
    Pan, Shuhui
    Qin, Liwen
    Yuan, Zhiyong
    Huang, Weixiang
    Bai, Hao
    Lei, Jinyong
    INTERNATIONAL TRANSACTIONS ON ELECTRICAL ENERGY SYSTEMS, 2021, 31 (11)
  • [27] Transfer Learning for Photovoltaic Power Forecasting with Long Short-Term Memory Neural Network
    Zhou, Siyu
    Zhou, Lin
    Mao, Mingxuan
    Xi, Xinze
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING (BIGCOMP 2020), 2020, : 125 - 132
  • [28] Short-Term Photovoltaic Power Forecasting Based on Long Short Term Memory Neural Network and Attention Mechanism
    Zhou, Hangxia
    Zhang, Yujin
    Yang, Lingfan
    Liu, Qian
    Yan, Ke
    Du, Yang
    IEEE ACCESS, 2019, 7 : 78063 - 78074
  • [29] Deep solar radiation forecasting with convolutional neural network and long short-term memory network algorithms
    Ghimire, Sujan
    Deo, Ravinesh C.
    Raj, Nawin
    Mi, Jianchun
    APPLIED ENERGY, 2019, 253
  • [30] An effective deep learning neural network model for short-term load forecasting
    Li, Ning
    Wang, Lu
    Li, Xinquan
    Zhu, Qing
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2020, 32 (07):