SEMANTIC SEGMENTATION OF HIGH-RESOLUTION REMOTE SENSING IMAGES USING AN IMPROVED TRANSFORMER

被引:5
|
作者
Liu, Yuheng [1 ]
Mei, Shaohui [1 ]
Zhang, Shun [1 ]
Wang, Ye [1 ]
He, Mingyi [1 ]
Du, Qian [2 ]
机构
[1] Northwestern Polytech Univ, Sch Elect & Informat, Xian 710129, Peoples R China
[2] Mississippi State Univ, Dept Elect & Comp Engn, Starkville, MS 39762 USA
基金
中国国家自然科学基金;
关键词
Remote Sensing; High Spatial Resolution; Transformer; Semantic Segmentation;
D O I
10.1109/IGARSS46834.2022.9884103
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Semantic segmentation has been widely researched for high level analysis of High Spatial Resolution (HSR) remote sensing images, where Convolutional Neural Network (CNN) is the mainstream method. However, the transformer with attention mechanism has its unique capacity of extracting global information which is generally ignored by CNN models. In this paper, a Swin Transformer with UPer head (STUP) is proposed to tackle with semantic segmentation problem on a challenging remote sensing land-cover dataset called LoveDA, which owns complex background samples and inconsistent classes distributions. The proposed STUP combines the Swin Transformer with Uper Head in the form of an encoder-decoder structure, to extract features of HSR images for segmentation. Furthermore, Focal Loss is adopted to handle the unbalanced distribution problem in the training step. Experimental results demonstrate that the proposed STUP clearly outperforms several state-of-the-art models.
引用
收藏
页码:3496 / 3499
页数:4
相关论文
共 50 条
  • [31] MFRNet: A Multipath Feature Refinement Network for Semantic Segmentation in High-Resolution Remote Sensing Images
    Xiao, Tao
    Liu, Yikun
    Huang, Yuwen
    Yang, Gongping
    [J]. REMOTE SENSING LETTERS, 2022, 13 (12) : 1271 - 1283
  • [32] A Semantic Segmentation Method for High-resolution Remote Sensing Images Based on Encoder-Decoder
    Yang, Jingyu
    Zhao, Liang
    Dang, Jianwu
    Wang, Yangping
    Yue, Biao
    Gu, Zongliang
    [J]. 2022 TENTH INTERNATIONAL CONFERENCE ON ADVANCED CLOUD AND BIG DATA, CBD, 2022, : 98 - 103
  • [33] Enhanced Lightweight End-to-End Semantic Segmentation for High-Resolution Remote Sensing Images
    Dong, He
    Yu, Baoguo
    Wu, Wanqing
    He, Chenglong
    [J]. IEEE ACCESS, 2022, 10 : 70947 - 70954
  • [34] SERNet: Squeeze and Excitation Residual Network for Semantic Segmentation of High-Resolution Remote Sensing Images
    Zhang, Xiaoyan
    Li, Linhui
    Di, Donglin
    Wang, Jian
    Chen, Guangsheng
    Jing, Weipeng
    Emam, Mahmoud
    [J]. REMOTE SENSING, 2022, 14 (19)
  • [35] SEMANTIC SEGMENTATION OF HIGH-RESOLUTION REMOTE SENSING IMAGES BASED ON SPARSE SELF-ATTENTION
    Sun, Li
    Zou, Huanxin
    Wei, Juan
    Li, Meilin
    Cao, Xu
    He, Shitian
    Liu, Shuo
    [J]. 2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 3492 - 3495
  • [36] LIGHT-WEIGHT ATTENTION SEMANTIC SEGMENTATION NETWORK FOR HIGH-RESOLUTION REMOTE SENSING IMAGES
    Liu, Siyu
    He, Changtao
    Bai, Haiwei
    Zhang, Yijie
    Cheng, Jian
    [J]. IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 2595 - 2598
  • [37] HCANet: A Hierarchical Context Aggregation Network for Semantic Segmentation of High-Resolution Remote Sensing Images
    Bai, Haiwei
    Cheng, Jian
    Huang, Xia
    Liu, Siyu
    Deng, Changjian
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [38] Enhanced Lightweight End-to-End Semantic Segmentation for High-Resolution Remote Sensing Images
    Dong, He
    Yu, Baoguo
    Wu, Wanqing
    He, Chenglong
    [J]. IEEE Access, 2022, 10 : 70947 - 70954
  • [39] FSegNet: A Semantic Segmentation Network for High-Resolution Remote Sensing Images That Balances Efficiency and Performance
    Luo, Wen
    Deng, Fei
    Jiang, Peifan
    Dong, Xiujun
    Zhang, Gulan
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21 : 1 - 5
  • [40] Global Multi-Attention UResNeXt for Semantic Segmentation of High-Resolution Remote Sensing Images
    Chen, Zhong
    Zhao, Jun
    Deng, He
    [J]. REMOTE SENSING, 2023, 15 (07)