A NORM INEQUALITY FOR PAIRS OF COMMUTING POSITIVE SEMIDEFINITE MATRICES

被引:20
|
作者
Audenaert, Koenraad M. R. [1 ,2 ]
机构
[1] Royal Holloway Univ London, Dept Math, Egham TW20 0EX, Surrey, England
[2] Univ Ghent, Dept Phys & Astron, B-9000 Ghent, Belgium
来源
关键词
Matrix Inequality; Unitarily Invariant Norm; Positive semidefinite matrix;
D O I
10.13001/1081-3810.2829
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For i = 1, ... , k, let A(i) and B-i be positive semidefinite matrices such that, for each i, A(i) commutes with B-i. It is shown that, for any unitarily invariant norm, vertical bar vertical bar vertical bar Sigma(k)(i-1)A(i)B(i)vertical bar vertical bar vertical bar <= vertical bar vertical bar vertical bar (Sigma(k)(i-1)A(i)(Sigma B-k(i-1)i)vertical bar vertical bar vertical bar. The k = 2 case was recently conjectured by Hayajneh and Kittaneh and proven by them for the trace norm and the Hilbert-Schmidt norm. A simple application of this norm inequality answers a question of Bourin in the affirmative.
引用
收藏
页码:80 / 84
页数:5
相关论文
共 50 条