A Hilbert-Schmidt norm Inequality for positive semidefinite matrices related to a question of Bourin

被引:2
|
作者
Hayajneh, Mostafa [1 ]
Hayajneh, Saja [2 ]
Kittaneh, Fuad [2 ]
机构
[1] Yarmouk Univ, Dept Math, Irbid, Jordan
[2] Univ Jordan, Dept Math, Amman, Jordan
关键词
Trace; Hilbert-Schmidt norm; Positive semidefinite matrix; Bourin's question; Inequality; ANDO; HIAI;
D O I
10.1007/s11117-022-00924-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A and B be positive semidefinite matrices of the same size. Using a trace inequality of Ando, Hiai, and Okubo, we prove that parallel to B1-t A(2t-1) B1-t + A(1-t )B(2t-1) A(1-t) parallel to(2) <= parallel to A + B parallel to(2) for t is an element of [1/2, 3/4], where parallel to.parallel to(2) denotes the Hilbert-Schmidt norm. This gives an affimative answer to a question posed by Hayajneh and Kittaneh regarding an open question of Bourin in the case of the Hilbert-Schmidt norm.
引用
收藏
页数:9
相关论文
共 50 条