Masked Autoencoders for Point Cloud Self-supervised Learning

被引:107
|
作者
Pang, Yatian [2 ]
Wang, Wenxiao [3 ]
Tay, Francis E. H. [2 ]
Liu, Wei [4 ]
Tian, Yonghong [1 ,5 ]
Yuan, Li [1 ,5 ]
机构
[1] Peking Univ, Sch Elect & Comp Engn, Beijing, Peoples R China
[2] Natl Univ Singapore, Singapore, Singapore
[3] Zhejiang Univ, Hangzhou, Peoples R China
[4] Tencent Data Platform, Shenzhen, Peoples R China
[5] PengCheng Lab, Shenzhen, Peoples R China
来源
关键词
NETWORK;
D O I
10.1007/978-3-031-20086-1_35
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
As a promising scheme of self-supervised learning, masked autoencoding has significantly advanced natural language processing and computer vision. Inspired by this, we propose a neat scheme of masked autoencoders for point cloud self-supervised learning, addressing the challenges posed by point cloud's properties, including leakage of location information and uneven information density. Concretely, we divide the input point cloud into irregular point patches and randomly mask them at a high ratio. Then, a standard Transformer based autoencoder, with an asymmetric design and a shifting mask tokens operation, learns high-level latent features from unmasked point patches, aiming to reconstruct the masked point patches. Extensive experiments show that our approach is efficient during pre-training and generalizes well on various downstream tasks. The pre-trained models achieve 85.18% accuracy on ScanObjectNN and 94.04% accuracy on ModelNet40, outperforming all the other self-supervised learning methods. We show with our scheme, a simple architecture entirely based on standard Transformers can surpass dedicated Transformer models from supervised learning. Our approach also advances state-of-the-art accuracies by 1.5%-2.3% in the few-shot classification. Furthermore, our work inspires the feasibility of applying unified architectures from languages and images to the point cloud. Codes are available at https://github.com/Pang-Yatian/Point-MAE.
引用
收藏
页码:604 / 621
页数:18
相关论文
共 50 条
  • [21] GeoMAE: Masked Geometric Target Prediction for Self-supervised Point Cloud Pre-Training
    Tian, Xiaoyu
    Ran, Haoxi
    Wang, Yue
    Zhao, Hang
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 13570 - 13580
  • [22] A Survey on Masked Autoencoder for Visual Self-supervised Learning
    Zhang, Chaoning
    Zhang, Chenshuang
    Song, Junha
    Yi, John Seon Keun
    Kweon, In So
    PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023, 2023, : 6805 - 6813
  • [23] Self-Contrastive Learning with Hard Negative Sampling for Self-supervised Point Cloud Learning
    Du, Bi'an
    Gao, Xiang
    Hu, Wei
    Li, Xin
    PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 3133 - 3142
  • [24] Point Contrastive Prediction with Semantic Clustering for Self-Supervised Learning on Point Cloud Videos
    Sheng, Xiaoxiao
    Shen, Zhiqiang
    Xiao, Gang
    Wang, Longguang
    Guo, Yulan
    Fan, Hehe
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 16469 - 16478
  • [25] PointUR-RL: Unified Self-Supervised Learning Method Based on Variable Masked Autoencoder for Point Cloud Reconstruction and Representation Learning
    Li, Kang
    Zhu, Qiuquan
    Wang, Haoyu
    Wang, Shibo
    Tian, He
    Zhou, Ping
    Cao, Xin
    REMOTE SENSING, 2024, 16 (16)
  • [26] rPPG-MAE: Self-Supervised Pretraining With Masked Autoencoders for Remote Physiological Measurements
    Liu, Xin
    Zhang, Yuting
    Yu, Zitong
    Lu, Hao
    Yue, Huanjing
    Yang, Jingyu
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 7278 - 7293
  • [27] Self-supervised autoencoders for clustering and classification
    Paraskevi Nousi
    Anastasios Tefas
    Evolving Systems, 2020, 11 : 453 - 466
  • [28] Self-supervised autoencoders for clustering and classification
    Nousi, Paraskevi
    Tefas, Anastasios
    EVOLVING SYSTEMS, 2020, 11 (03) : 453 - 466
  • [29] Generative Variational-Contrastive Learning for Self-Supervised Point Cloud Representation
    Wang, Bohua
    Tian, Zhiqiang
    Ye, Aixue
    Wen, Feng
    Du, Shaoyi
    Gao, Yue
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (09) : 6154 - 6166
  • [30] Self-Supervised Point Cloud Representation Learning via Separating Mixed Shapes
    Sun, Chao
    Zheng, Zhedong
    Wang, Xiaohan
    Xu, Mingliang
    Yang, Yi
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 6207 - 6218