Characterization and Circuit Modeling of Graphene Nano Ribbon Field Effect Transistors

被引:0
|
作者
Nakkala, P. [1 ]
Meng, N. [2 ]
Martin, A. [1 ]
Campovecchio, M. [1 ]
Happy, H. [3 ]
机构
[1] XLIM UMR CNRS 6172, F-87060 Limoges, France
[2] Zhejiang Univ, Hangzhou 310027, Peoples R China
[3] IEMN UMR CNRS 8520, F-59652 Villeneuve Dascq, France
关键词
Graphene; GNR-FET; small signal model; pulsed characterization; de-embedding;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper reports on the pulsed I-V and microwave characterizations of a Graphene Nano Ribbon FET (GNR-FET) for nonlinear electrical modeling. The extraction method of model parameters is based on the characterization of three specific technological structures called PAD, MUTE and FET (integrating only the coplanar access structure, the FET without graphene, and the entire GNR-FET) respectively. The differences between DC and pulsed I-V characterizations of the GNR FET and the evolution of its multi-bias S-parameters are investigated and compared to simulations. The nonlinear modeling of GNR FET is becoming of prime importance along with technological efforts to study the actual potential of this emerging technology.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] On Device Modeling for Circuit Simulation With Application to Carbon-Nanotube and Graphene Nano-Ribbon Field-Effect Transistors
    Hajj, Ibrahim N.
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2015, 34 (03) : 495 - 499
  • [2] Schottky-Barrier-Type Graphene Nano-Ribbon Field-Effect Transistors: A Study on Compact Modeling, Process Variation, and Circuit Performance
    Chen, Ying-Yu
    Sangai, Amit
    Gholipour, Morteza
    Chen, Deming
    PROCEEDINGS OF THE 2013 IEEE/ACM INTERNATIONAL SYMPOSIUM ON NANOSCALE ARCHITECTURES (NANOARCH), 2013, : 82 - 88
  • [3] Graphene Nano-Ribbon Field-Effect Transistors as Future Low-Power Devices
    Chen, Ying-Yu
    Sangai, Amit
    Gholipour, Morteza
    Chen, Deming
    2013 IEEE INTERNATIONAL SYMPOSIUM ON LOW POWER ELECTRONICS AND DESIGN (ISLPED), 2013, : 151 - 156
  • [4] Performance limits of graphene-ribbon field-effect transistors
    Munoz-Rojas, F.
    Fernandez-Rossier, J.
    Brey, L.
    Palacios, J. J.
    PHYSICAL REVIEW B, 2008, 77 (04)
  • [5] Hysteresis modeling in graphene field effect transistors
    Winters, M.
    Sveinbjornsson, E. O.
    Rorsman, N.
    JOURNAL OF APPLIED PHYSICS, 2015, 117 (07)
  • [6] Graphene Nano Ribbon Field Effect Transistor for High Frequency Applications
    Happy, H.
    Meng, N.
    Fleurier, R.
    Pichonat, E.
    Vignaud, D.
    Dambrine, G.
    2011 6TH EUROPEAN MICROWAVE INTEGRATED CIRCUIT CONFERENCE, 2011, : 577 - 580
  • [7] Graphene Nano Ribbon Field Effect Transistor for High Frequency Applications
    Happy, H.
    Meng, N.
    Fleurier, R.
    Pichonat, E.
    Vignaud, D.
    Dambrine, G.
    2011 41ST EUROPEAN MICROWAVE CONFERENCE, 2011, : 1138 - 1141
  • [8] Simulation Field Effect Transistor Bipolar Graphene Nano-Ribbon
    Masoumi, S.
    Hajghasem, H.
    Erfanian, A.
    Rad, A. Molaei
    5TH INTERNATIONAL BIENNIAL CONFERENCE ON ULTRAFINE GRAINED AND NANOSTRUCTURED MATERIALS, UFGNSM15, 2015, 11 : 407 - 411
  • [9] Modeling Techniques for Graphene Field-effect Transistors
    Lu, Haiyan
    Wu, Yun
    Huo, Shuai
    Xu, Yuehang
    Kong, Yuechan
    Chen, Tangshen
    2015 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATION PROBLEM-SOLVING (ICCP), 2015, : 373 - 376
  • [10] High-Frequency Noise Characterization and Modeling of Graphene Field-Effect Transistors
    Deng, Marina
    Fadil, Dalal
    Wei, Wei
    Pallecchi, Emiliano
    Happy, Henri
    Dambrine, Gilles
    De Matos, Magali
    Zimmer, Thomas
    Fregonese, Sebastien
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2020, 68 (06) : 2116 - 2123