Investigation of the Composition and Properties of a Cr2AlC MAX Phase-Based Material Prepared by Metallothermic SHS

被引:12
|
作者
Gorshkov, V. A. [1 ]
Miloserdov, P. A. [1 ]
Karpov, A. V. [1 ]
Shchukin, A. S. [1 ]
Sytschev, A. E. [1 ]
机构
[1] Russian Acad Sci, Merzhanov Inst Struct Macrokinet & Mat Sci, Chernogolovka 142432, Russia
来源
PHYSICS OF METALS AND METALLOGRAPHY | 2019年 / 120卷 / 05期
关键词
metallothermic SHS; SHS reactor; gas pressure; cast materials; Cr2AlC MAX phase; CERAMICS;
D O I
10.1134/S0031918X19050041
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
Cast composite material based on Cr2AlC MAX phase has been prepared by metallothermic self-propagating high-temperature synthesis (SHS) from a mixture of powders of chromium oxide, aluminum, and carbon. The experiments have been performed using an SHS reactor with a volume V of 3 L under an excess inert gas (Ar) pressure (P = 5 MPa). The prepared material has been studied by X-ray diffraction analysis, scanning electron microscopy, and local microstructural analysis. The quantitative analysis has been performed by the Rietveld method. The electrical resistivity was measured in the 100-1300 K temperature range. The resulting material is an electrical conductor with metallic conductivity in the 100-1300 K temperature range, and has the electrical resistivity of the same order as the samples containing 100% Cr2AlC.
引用
收藏
页码:471 / 475
页数:5
相关论文
共 50 条
  • [21] In situ Coating and Hot Corrosion Behavior of Cr2AlC MAX Phase
    Zakeri-Shahroudi, Fatemeh
    Ghasemi, Behrooz
    Abdolahpour, Hassan
    Razavi, Mansour
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2024, 33 (12) : 5846 - 5858
  • [22] Thermal cycling testing of TBCs on Cr2AlC MAX phase substrates
    Gonzalez-Julian, J.
    Go, T.
    Mack, D. E.
    Vassen, R.
    SURFACE & COATINGS TECHNOLOGY, 2018, 340 : 17 - 24
  • [23] Mechanical properties of SPS-processed Cr2AlC MAX phase with different impurity contents
    Shamsipoor, A.
    Farvizi, M.
    Mousavi, B.
    EMERGENT MATERIALS, 2023, 6 (03) : 965 - 972
  • [24] Mechanical properties of SPS-processed Cr2AlC MAX phase with different impurity contents
    A. Shamsipoor
    M. Farvizi
    B. Mousavi
    Emergent Materials, 2023, 6 : 965 - 972
  • [25] Yttrium incorporation in Cr2AlC: On the metastable phase formation and decomposition of (Cr,Y)2AlC MAX phase thin films
    Azina, Clio
    Bartsch, Tim
    Holzapfel, Damian M.
    Dahlqvist, Martin
    Rosen, Johanna
    Lofler, Lukas
    Mendez, Alba San Jose
    Hans, Marcus
    Primetzhofer, Daniel
    Schneider, Jochen M.
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2023, 106 (04) : 2652 - 2665
  • [26] The effect of milling time and heat treatment on the synthesis of the Cr2AlC MAX phase
    Mansouri, Bahman
    Rafiei, Mahdi
    Ebrahimzadeh, Iman
    Naeimi, Farid
    Barekat, Masoud
    CANADIAN METALLURGICAL QUARTERLY, 2024, 63 (03) : 970 - 980
  • [27] Sintering behavior of Cr2AlC MAX phase synthesized by Spark plasma sintering
    Zakeri-Shahroudi, Fatemeh
    Ghasemi, Behrooz
    Abdolahpour, Hassan
    Razavi, Mansour
    INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY, 2022, 19 (03) : 1309 - 1318
  • [28] Effect of sintering method on the microstructure of pure Cr2AlC MAX phase ceramics
    Gonzalez-Julian, Jesus
    Onrubia, Sara
    Bram, Martin
    Guillon, Olivier
    JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, 2016, 124 (04) : 415 - 420
  • [29] Cr2AlC MAX phase: A promising bond coat TBC material with high resistance to high temperature oxidation
    Shamsipoor, A.
    Mousavi, B.
    Razavi, M.
    Bahamirian, M.
    Farvizi, M.
    CERAMICS INTERNATIONAL, 2025, 51 (05) : 6439 - 6447
  • [30] Influences of processing parameters on the microstructure and wear performance of Cr2AlC MAX phase prepared by spark plasma sintering method
    Shamsipoor, A.
    Farvizi, M.
    Razavi, M.
    Keyvani, A.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 815