Face X-ray for More General Face Forgery Detection

被引:530
|
作者
Li, Lingzhi [1 ,2 ]
Bao, Jianmin [2 ]
Zhang, Ting [2 ]
Yang, Hao [2 ]
Chen, Dong [2 ]
Wen, Fang [2 ]
Guo, Baining [2 ]
机构
[1] Peking Univ, Beijing, Peoples R China
[2] Microsoft Res Asia, Beijing, Peoples R China
关键词
IMAGE; LOCALIZATION;
D O I
10.1109/CVPR42600.2020.00505
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we propose a novel image representation called face X-ray for detecting forgery in face images. The face X-ray of an input face image is a greyscale image that reveals whether the input image can be decomposed into the blending of two images from different sources. It does so by showing the blending boundary for a forged image and the absence of blending for a real image. We observe that most existing face manipulation methods share a common step: blending the altered face into an existing background image. For this reason, face X-ray provides an effective way for detecting forgery generated by most existing face manipulation algorithms. Face X-ray is general in the sense that it only assumes the existence of a blending step and does not rely on any knowledge of the artifacts associated with a specific face manipulation technique. Indeed, the algorithm for computing face X-ray can be trained without fake images generated by any of the state-of-the-art face manipulation methods. Extensive experiments show that face X-ray remains effective when applied to forgery generated by unseen face manipulation techniques, while most existing face forgery detection or deepfake detection algorithms experience a significant performance drop.
引用
收藏
页码:5000 / 5009
页数:10
相关论文
共 50 条
  • [11] A Survey on Face Forgery Detection of Deepfake
    Zhang, Ying
    Gao, Feng
    Zhou, Zichen
    Guo, Hong
    THIRTEENTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2021), 2021, 11878
  • [12] X-RAY DAMAGE OF THE FACE FROM COSMETIC X-RAY EPILATION
    FERGUSON, EH
    GRIEM, SF
    ARCHIVES OF DERMATOLOGY, 1956, 73 (04) : 406 - 406
  • [13] Face Forgery Detection Combined with Deep Forgery Features Comparison
    Li, Zhaowei
    Gao, Xinjian
    Da, Zikai
    Gao, Jun
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2024, 37 (09): : 786 - 797
  • [14] Self-Information Forgery Mining for Face Forgery Detection
    Wang X.
    Wei J.
    Applied Mathematics and Nonlinear Sciences, 2024, 9 (01)
  • [15] Revisiting face forgery detection towards generalization
    Peng, Chunlei
    Chen, Tao
    Liu, Decheng
    Guo, Huiqing
    Wang, Nannan
    Gao, Xinbo
    NEURAL NETWORKS, 2025, 187
  • [16] Concentric Ring Loss for Face Forgery Detection
    Yin, Yu
    Bai, Yue
    Wang, Yizhou
    Fu, Yun
    23RD IEEE INTERNATIONAL CONFERENCE ON DATA MINING, ICDM 2023, 2023, : 1505 - 1510
  • [17] FACE FORGERY DETECTION BASED ON SEGMENTATION NETWORK
    Zhou, Yingbin
    Luo, Anwei
    Kang, Xiangui
    Lyu, Siwei
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 3597 - 3601
  • [18] Representative Forgery Mining for Fake Face Detection
    Wang, Chengrui
    Deng, Weihong
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 14918 - 14927
  • [19] Adaptive Face Forgery Detection in Cross Domain
    Song, Luchuan
    Fang, Zheng
    Li, Xiaodan
    Dong, Xiaoyi
    Jin, Zhenchao
    Chen, Yuefeng
    Lyu, Siwei
    COMPUTER VISION, ECCV 2022, PT XXXIV, 2022, 13694 : 467 - 484
  • [20] Local Relation Learning for Face Forgery Detection
    Chen, Shen
    Yao, Taiping
    Chen, Yang
    Ding, Shouhong
    Li, Jilin
    Ji, Rongrong
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 1081 - 1088