Classification of radiologically isolated syndrome and clinically isolated syndrome with machine-learning techniques

被引:16
|
作者
Mato-Abad, V. [1 ]
Labiano-Fontcuberta, A. [2 ]
Rodriguez-Yanez, S. [1 ]
Garcia-Vazquez, R. [1 ]
Munteanu, C. R. [3 ,4 ]
Andrade-Garda, J. [1 ]
Domingo-Santos, A. [2 ]
Galan Sanchez-Seco, V. [2 ]
Aladro, Y. [5 ]
Martinez-Gines, M. L. [6 ]
Ayuso, L. [7 ]
Benito-Leon, J. [2 ,8 ,9 ]
机构
[1] Univ A Coruna, Fac Comp Sci, ISLA, La Coruna, Spain
[2] Univ Hosp 12 Octubre, Dept Neurol, Ave Constituc 73,Portal 3,7 Izquierda, Madrid 28821, Spain
[3] Univ A Coruna, Fac Comp Sci, RNASA IMEDIR, La Coruna, Spain
[4] Univ Hosp Complex A Coruna, Biomed Res Inst A Coruna INIBIC, La Coruna, Spain
[5] Getafe Univ Hosp, Dept Neurol, Getafe, Spain
[6] Univ Hosp Gregorio Maranon, Dept Neurol, Madrid, Spain
[7] Univ Hosp Principe de Asturias, Dept Neurol, Alcala De Henares, Spain
[8] Ctr Invest Biomed Red Enfermedades Neurodegenerat, Madrid, Spain
[9] Univ Complutense, Dept Med, Madrid, Spain
关键词
Bagging; clinically isolated syndrome; diffusion tensor imaging; machine-learning; magnetic resonance imaging; Multilayer Perceptron; multiple sclerosis; Naive Bayes classifier; radiologically isolated syndrome; MULTIPLE-SCLEROSIS; PERFORMANCE; IMPAIRMENT; DISABILITY; DEPRESSION; CRITERIA; CORTEX;
D O I
10.1111/ene.13923
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Background and purpose The unanticipated detection by magnetic resonance imaging (MRI) in the brain of asymptomatic subjects of white matter lesions suggestive of multiple sclerosis (MS) has been named radiologically isolated syndrome (RIS). As the difference between early MS [i.e. clinically isolated syndrome (CIS)] and RIS is the occurrence of a clinical event, it is logical to improve detection of the subclinical form without interfering with MRI as there are radiological diagnostic criteria for that. Our objective was to use machine-learning classification methods to identify morphometric measures that help to discriminate patients with RIS from those with CIS. Methods We used a multimodal 3-T MRI approach by combining MRI biomarkers (cortical thickness, cortical and subcortical grey matter volume, and white matter integrity) of a cohort of 17 patients with RIS and 17 patients with CIS for single-subject level classification. Results The best proposed models to predict the diagnosis of CIS and RIS were based on the Naive Bayes, Bagging and Multilayer Perceptron classifiers using only three features: the left rostral middle frontal gyrus volume and the fractional anisotropy values in the right amygdala and right lingual gyrus. The Naive Bayes obtained the highest accuracy [overall classification, 0.765; area under the receiver operating characteristic (AUROC), 0.782]. Conclusions A machine-learning approach applied to multimodal MRI data may differentiate between the earliest clinical expressions of MS (CIS and RIS) with an accuracy of 78%.
引用
收藏
页码:1000 / 1005
页数:6
相关论文
共 50 条
  • [21] Cortical lesions in radiologically isolated syndrome
    Giorgio, A.
    Stromillo, M. L.
    Rossi, F.
    Battaglini, M.
    Hakiki, B.
    Portaccio, E.
    Federico, A.
    Amato, M. P.
    De Stefano, N.
    NEUROLOGY, 2011, 77 (21) : 1896 - 1899
  • [22] Treatment Considerations in the Radiologically Isolated Syndrome
    Naila Makhani
    Current Treatment Options in Neurology, 2020, 22
  • [23] Clinically isolated syndrome
    Platten, M.
    Lanz, T.
    Bendszus, M.
    Diem, R.
    NERVENARZT, 2013, 84 (10): : 1247 - 1257
  • [24] Cognitive function in radiologically isolated syndrome
    Martinez Herves, H.
    Aguado Valcarcel, M.
    Gonzalez-Suarez, I.
    Alvarez, E.
    Sanchez Franco, C. M.
    Bello Otero, L.
    Lopez Caneda, C. H.
    Couso Pazo, I.
    Sequeiros, S.
    MULTIPLE SCLEROSIS JOURNAL, 2020, 26 (3_SUPPL) : 498 - 498
  • [25] Early multiple sclerosis: diagnostic challenges in clinically and radiologically isolated syndrome patients
    Calabrese, Massimiliano
    Marastoni, Damiano
    Crescenzo, Francesco
    Scalfari, Antonio
    CURRENT OPINION IN NEUROLOGY, 2021, 34 (03) : 277 - 285
  • [26] From Postural Orthostatic Tachycardia Syndrome to Radiologically Isolated Syndrome
    Tripathi, Richa
    Bernitsas, Evanthia
    CASE REPORTS IN NEUROLOGICAL MEDICINE, 2018, 2018
  • [27] Gray Matter Involvement in Radiologically Isolated Syndrome
    Labiano-Fontcuberta, Andres
    Mato-Abad, Virginia
    Alvarez-Linera, Juan
    Antonio Hernandez-Tamames, Juan
    Luisa Martinez-Gines, Ma
    Aladro, Yolanda
    Ayuso, Lucia
    Domingo-Santos, Angela
    Benito-Leon, Julian
    MEDICINE, 2016, 95 (13) : e3208
  • [28] Radiologically isolated syndrome: a clinical and therapeutic dilemma
    Garcia-Estevez, Daniel A.
    REVISTA DE NEUROLOGIA, 2012, 55 (01) : 61 - 62
  • [29] Impact of Pregnancy on Radiologically Isolated Syndrome (RIS)
    Frenay, Christine Lebrun
    Le Page, Em-manuelle
    Kantarci, Orhun
    Siva, Aksel
    Pelletier, Daniel
    Okuda, Darin
    NEUROLOGY, 2011, 76 (09) : A273 - A274
  • [30] Differences in oligoclonal bands and visual evoked potentials in patients with radiologically and clinically isolated syndrome
    Tereza Gabelić
    Marin Radmilović
    Vanja Posavec
    Ana Škvorc
    Mateja Bošković
    Ivan Adamec
    Iva Milivojević
    Barbara Barun
    Mario Habek
    Acta Neurologica Belgica, 2013, 113 : 13 - 17