Exponential stability and synchronization of Memristor-based fractional-order fuzzy cellular neural networks with multiple delays

被引:35
|
作者
Yao, Xueqi [1 ,2 ]
Liu, Xinzhi [2 ]
Zhong, Shouming [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Peoples R China
[2] Univ Waterloo, Dept Appl Math, Waterloo, ON N2L 3G1, Canada
关键词
Fuzzy cellular neural networks; Fractional-order; Memristor; Multiple delays; Exponential stability; FINITE-TIME STABILITY; NONLINEAR-SYSTEMS;
D O I
10.1016/j.neucom.2020.08.057
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The stability and synchronization problems are addressed in this study for the memristor-based fractional-order fuzzy cellular neural networks with multiple delays. By using the Laplace transform method, fractional-order calculus approach and the method of complex function, three exponential sta-bility criteria are derived. Compared with the existing results of the above system, the novel exponentially stable and synchronization conditions are first proposed. The obtained results can be applied not only to fractional-order systems, but also to integer-order systems. A two-dimension example and a three-dimension example and a practical example are given to illustrate the validity and merits. (c) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:239 / 250
页数:12
相关论文
共 50 条
  • [31] Finite-time projective synchronization of memristor-based delay fractional-order neural networks
    Mingwen Zheng
    Lixiang Li
    Haipeng Peng
    Jinghua Xiao
    Yixian Yang
    Hui Zhao
    Nonlinear Dynamics, 2017, 89 : 2641 - 2655
  • [32] Finite-time projective synchronization of memristor-based delay fractional-order neural networks
    Zheng, Mingwen
    Li, Lixiang
    Peng, Haipeng
    Xiao, Jinghua
    Yang, Yixian
    Zhao, Hui
    NONLINEAR DYNAMICS, 2017, 89 (04) : 2641 - 2655
  • [33] Stability analysis of memristor-based time-delay fractional-order neural networks
    Liu, Weizhen
    Jiang, Minghui
    Yan, Meng
    NEUROCOMPUTING, 2019, 323 : 117 - 127
  • [34] Stability analysis of memristor-based fractional-order neural networks with different memductance functions
    Rakkiyappan, R.
    Velmurugan, G.
    Cao, Jinde
    COGNITIVE NEURODYNAMICS, 2015, 9 (02) : 145 - 177
  • [35] Synchronization for fractional-order time-delayed memristor-based neural networks with parameter uncertainty
    Gu, Yajuan
    Yu, Yongguang
    Wang, Hu
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2016, 353 (15): : 3657 - 3684
  • [36] Finite-Time Stability of Delayed Memristor-Based Fractional-Order Neural Networks
    Chen, Chongyang
    Zhu, Song
    Wei, Yongchang
    Chen, Chongyang
    IEEE TRANSACTIONS ON CYBERNETICS, 2020, 50 (04) : 1607 - 1616
  • [37] Stability analysis of memristor-based fractional-order neural networks with different memductance functions
    R. Rakkiyappan
    G. Velmurugan
    Jinde Cao
    Cognitive Neurodynamics, 2015, 9 : 145 - 177
  • [38] Global exponential periodicity and stability of a class of memristor-based recurrent neural networks with multiple delays
    Zhang, Guodong
    Shen, Yi
    Yin, Quan
    Sun, Junwei
    INFORMATION SCIENCES, 2013, 232 : 386 - 396
  • [39] Global asymptotic synchronization of impulsive fractional-order complex-valued memristor-based neural networks with time varying delays
    Ali, M. Syed
    Hymavathi, M.
    Senan, Sibel
    Shekher, Vineet
    Arik, Sabri
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 78
  • [40] Exponential synchronization of memristor-based recurrent neural networks with multi-proportional delays
    Su, Lijuan
    Zhou, Liqun
    NEURAL COMPUTING & APPLICATIONS, 2019, 31 (11): : 7907 - 7920