PLEIO: a method to map and interpret pleiotropic loci with GWAS summary statistics

被引:25
|
作者
Lee, Cue Hyunkyu [1 ,2 ]
Shi, Huwenbo [3 ]
Pasaniuc, Bogdan [4 ,5 ,6 ]
Eskin, Eleazar [4 ,6 ,7 ]
Han, Buhm [1 ,8 ]
机构
[1] Seoul Natl Univ, Coll Med, BK21 Plus Biomed Sci Project, Dept Biomed Sci, Seoul 03080, South Korea
[2] Univ Ulsan, Asan Med Ctr, Dept Convergence Med, Coll Med, Seoul 05505, South Korea
[3] Univ Calif Los Angeles, Bioinformat Interdept Program, Los Angeles, CA 90095 USA
[4] Univ Calif Los Angeles, Dept Human Genet, Los Angeles, CA 90095 USA
[5] Univ Calif Los Angeles, Dept Pathol & Lab Med, Los Angeles, CA 90095 USA
[6] Univ Calif Los Angeles, Dept Computat Med, Los Angeles, CA 90095 USA
[7] Univ Calif Los Angeles, Dept Comp Sci, Los Angeles, CA 90095 USA
[8] Seoul Natl Univ, Interdisciplinary Program Bioengn, Seoul 03080, South Korea
基金
新加坡国家研究基金会;
关键词
GENOME-WIDE ASSOCIATION; LD SCORE REGRESSION; GENETIC-CORRELATION; COMPLEX TRAITS; METAANALYSIS; MODEL; DISEASES; POWER;
D O I
10.1016/j.ajhg.2020.11.017
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Identifying and interpreting pleiotropic loci is essential to understanding the shared etiology among diseases and complex traits. A common approach to mapping pleiotropic loci is to meta-analyze GWAS summary statistics across multiple traits. However, this strategy does not account for the complex genetic architectures of traits, such as genetic correlations and heritabilities. Furthermore, the interpretation is challenging because phenotypes often have different characteristics and units. We propose PLEIO (Pleiotropic Locus Exploration and Interpretation using Optimal test), a summary-statistic-based framework to map and interpret pleiotropic loci in a joint analysis of multiple diseases and complex traits. Our method maximizes power by systematically accounting for genetic correlations and heritabilities of the traits in the association test. Any set of related phenotypes, binary or quantitative traits with different units, can be combined seamlessly. In addition, our framework offers interpretation and visualization tools to help downstream analyses. Using our method, we combined 18 traits related to cardiovascular disease and identified 13 pleiotropic loci, which showed four different patterns of associations.
引用
收藏
页码:36 / 48
页数:13
相关论文
共 50 条
  • [31] An online platform for GWAS/EWAS summary statistics harmonisation and data imputation
    Demirkan, A.
    Rudometkin, K.
    Zudina, L.
    Balkhiyarova, Z.
    Kaakinen, M.
    Prokopenko, I.
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2020, 28 (SUPPL 1) : 654 - 654
  • [32] Reconstructing SNP allele and genotype frequencies from GWAS summary statistics
    Zhiyu Yang
    Peristera Paschou
    Petros Drineas
    Scientific Reports, 12
  • [33] Guidelines for Evaluating the Comparability of Down-Sampled GWAS Summary Statistics
    Williams, Camille M.
    Poore, Holly
    Tanksley, Peter T.
    Kweon, Hyeokmoon
    Courchesne-Krak, Natasia S.
    Londono-Correa, Diego
    Mallard, Travis T.
    Barr, Peter
    Koellinger, Philipp D.
    Waldman, Irwin D.
    Sanchez-Roige, Sandra
    Harden, K. Paige
    Palmer, Abraham A.
    Dick, Danielle M.
    Linner, Richard Karlsson
    BEHAVIOR GENETICS, 2023, 53 (5-6) : 404 - 415
  • [34] Reconstructing SNP allele and genotype frequencies from GWAS summary statistics
    Yang, Zhiyu
    Paschou, Peristera
    Drineas, Petros
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [35] Inferring a directed acyclic graph of phenotypes from GWAS summary statistics
    Zilinskas, Rachel
    Li, Chunlin
    Shen, Xiaotong
    Pan, Wei
    Yang, Tianzhong
    BIOMETRICS, 2024, 80 (01)
  • [36] Improved analyses of GWAS summary statistics by reducing data heterogeneity and errors
    Chen, Wenhan
    Wu, Yang
    Zheng, Zhili
    Qi, Ting
    Visscher, Peter M.
    Zhu, Zhihong
    Yang, Jian
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [37] Gene-based association tests using GWAS summary statistics
    Svishcheva, Gulnara R.
    Belonogova, Nadezhda M.
    Zorkoltseva, Irina V.
    Kirichenko, Anatoly V.
    Axenovich, Tatiana I.
    BIOINFORMATICS, 2019, 35 (19) : 3701 - 3708
  • [38] Improved analyses of GWAS summary statistics by reducing data heterogeneity and errors
    Wenhan Chen
    Yang Wu
    Zhili Zheng
    Ting Qi
    Peter M. Visscher
    Zhihong Zhu
    Jian Yang
    Nature Communications, 12
  • [39] GWAS Explorer: an open-source tool to explore, visualize, and access GWAS summary statistics in the PLCO Atlas
    Machiela, Mitchell J.
    Huang, Wen-Yi
    Wong, Wendy
    Berndt, Sonja I.
    Sampson, Joshua
    De Almeida, Jonas
    Abubakar, Mustapha
    Hislop, Jada
    Chen, Kai-Ling
    Dagnall, Casey
    Diaz-Mayoral, Norma
    Ferrell, Mary
    Furr, Michael
    Gonzalez, Alex
    Hicks, Belynda
    Hubbard, Aubrey K.
    Hutchinson, Amy
    Jiang, Kevin
    Jones, Kristine
    Liu, Jia
    Loftfield, Erikka
    Loukissas, Jennifer
    Mabie, Jerome
    Merkle, Shannon
    Miller, Eric
    Minasian, Lori M.
    Nordgren, Ellen
    Park, Brian
    Pinsky, Paul
    Riley, Thomas
    Sandoval, Lorena
    Saxena, Neeraj
    Vogt, Aurelie
    Wang, Jiahui
    Williams, Craig
    Wright, Patrick
    Yeager, Meredith
    Zhu, Bin
    Zhu, Claire
    Chanock, Stephen J.
    Garcia-Closas, Montserrat
    Freedman, Neal D.
    SCIENTIFIC DATA, 2023, 10 (01)
  • [40] GWAS Explorer: an open-source tool to explore, visualize, and access GWAS summary statistics in the PLCO Atlas
    Mitchell J. Machiela
    Wen-Yi Huang
    Wendy Wong
    Sonja I. Berndt
    Joshua Sampson
    Jonas De Almeida
    Mustapha Abubakar
    Jada Hislop
    Kai-Ling Chen
    Casey Dagnall
    Norma Diaz-Mayoral
    Mary Ferrell
    Michael Furr
    Alex Gonzalez
    Belynda Hicks
    Aubrey K. Hubbard
    Amy Hutchinson
    Kevin Jiang
    Kristine Jones
    Jia Liu
    Erikka Loftfield
    Jennifer Loukissas
    Jerome Mabie
    Shannon Merkle
    Eric Miller
    Lori M. Minasian
    Ellen Nordgren
    Brian Park
    Paul Pinsky
    Thomas Riley
    Lorena Sandoval
    Neeraj Saxena
    Aurelie Vogt
    Jiahui Wang
    Craig Williams
    Patrick Wright
    Meredith Yeager
    Bin Zhu
    Claire Zhu
    Stephen J. Chanock
    Montserrat Garcia-Closas
    Neal D. Freedman
    Scientific Data, 10