PLEIO: a method to map and interpret pleiotropic loci with GWAS summary statistics

被引:25
|
作者
Lee, Cue Hyunkyu [1 ,2 ]
Shi, Huwenbo [3 ]
Pasaniuc, Bogdan [4 ,5 ,6 ]
Eskin, Eleazar [4 ,6 ,7 ]
Han, Buhm [1 ,8 ]
机构
[1] Seoul Natl Univ, Coll Med, BK21 Plus Biomed Sci Project, Dept Biomed Sci, Seoul 03080, South Korea
[2] Univ Ulsan, Asan Med Ctr, Dept Convergence Med, Coll Med, Seoul 05505, South Korea
[3] Univ Calif Los Angeles, Bioinformat Interdept Program, Los Angeles, CA 90095 USA
[4] Univ Calif Los Angeles, Dept Human Genet, Los Angeles, CA 90095 USA
[5] Univ Calif Los Angeles, Dept Pathol & Lab Med, Los Angeles, CA 90095 USA
[6] Univ Calif Los Angeles, Dept Computat Med, Los Angeles, CA 90095 USA
[7] Univ Calif Los Angeles, Dept Comp Sci, Los Angeles, CA 90095 USA
[8] Seoul Natl Univ, Interdisciplinary Program Bioengn, Seoul 03080, South Korea
基金
新加坡国家研究基金会;
关键词
GENOME-WIDE ASSOCIATION; LD SCORE REGRESSION; GENETIC-CORRELATION; COMPLEX TRAITS; METAANALYSIS; MODEL; DISEASES; POWER;
D O I
10.1016/j.ajhg.2020.11.017
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Identifying and interpreting pleiotropic loci is essential to understanding the shared etiology among diseases and complex traits. A common approach to mapping pleiotropic loci is to meta-analyze GWAS summary statistics across multiple traits. However, this strategy does not account for the complex genetic architectures of traits, such as genetic correlations and heritabilities. Furthermore, the interpretation is challenging because phenotypes often have different characteristics and units. We propose PLEIO (Pleiotropic Locus Exploration and Interpretation using Optimal test), a summary-statistic-based framework to map and interpret pleiotropic loci in a joint analysis of multiple diseases and complex traits. Our method maximizes power by systematically accounting for genetic correlations and heritabilities of the traits in the association test. Any set of related phenotypes, binary or quantitative traits with different units, can be combined seamlessly. In addition, our framework offers interpretation and visualization tools to help downstream analyses. Using our method, we combined 18 traits related to cardiovascular disease and identified 13 pleiotropic loci, which showed four different patterns of associations.
引用
收藏
页码:36 / 48
页数:13
相关论文
共 50 条
  • [1] A comprehensive gene-centric pleiotropic association analysis for 14 psychiatric disorders with GWAS summary statistics
    Lu, Haojie
    Qiao, Jiahao
    Shao, Zhonghe
    Wang, Ting
    Huang, Shuiping
    Zeng, Ping
    BMC MEDICINE, 2021, 19 (01)
  • [2] A comprehensive gene-centric pleiotropic association analysis for 14 psychiatric disorders with GWAS summary statistics
    Haojie Lu
    Jiahao Qiao
    Zhonghe Shao
    Ting Wang
    Shuiping Huang
    Ping Zeng
    BMC Medicine, 19
  • [3] Identifying pleiotropic genes for major psychiatric disorders with GWAS summary statistics using multivariate adaptive association tests
    Wang, Yuping
    Yang, Yongli
    Jia, Xiaocan
    Zhao, Chenyu
    Yang, Chaojun
    Fan, Jingwen
    Wu, Meina
    Yu, Mengdie
    Dong, Ani
    Wang, Nana
    Lian, Jiao
    Shi, Xuezhong
    JOURNAL OF PSYCHIATRIC RESEARCH, 2022, 155 : 471 - 482
  • [4] RETRACTED: Potential Pleiotropic Genes and Shared Biological Pathways in Epilepsy and Depression Based on GWAS Summary Statistics (Retracted Article)
    Lin, Han
    Lin, Wan-Hui
    Lin, Feng
    Liu, Chang-Yun
    Che, Chun-Hui
    Huang, Hua-Pin
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
  • [5] Improved Detection of Potentially Pleiotropic Genes in Coronary Artery Disease and Chronic Kidney Disease Using GWAS Summary Statistics
    Chen, Haimiao
    Wang, Ting
    Yang, Jinna
    Huang, Shuiping
    Zeng, Ping
    FRONTIERS IN GENETICS, 2020, 11
  • [6] Engaging the GWAS community to increase Summary Statistics data sharing in the GWAS Catalog
    Cerezo, M.
    MacArthur, J. A. L.
    Buniello, A.
    Hayhurst, J.
    Hall, P.
    Harris, L. W.
    Hindorff, L. A.
    Jupp, S.
    Lewis, E.
    Malangone, C.
    McMahon, A.
    Morales, J.
    Sollis, E.
    Stewart, J.
    Suveges, D.
    Whetzel, P. L.
    Burdett, T.
    Cunningham, F.
    Flicek, P.
    Parkinson, H.
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2020, 28 (SUPPL 1) : 655 - 655
  • [7] BIVARIATE GAUSSIAN MIXTURE MODEL FOR GWAS SUMMARY STATISTICS
    Frei, Oleksandr
    Smeland, Olav
    Holland, Dominic
    Shadrin, Alexey
    Thompson, Wesley
    Andreassen, Ole
    Dale, Anders
    EUROPEAN NEUROPSYCHOPHARMACOLOGY, 2019, 29 : S898 - S899
  • [8] Bivariate Gaussian mixture model for GWAS summary statistics
    Frei, Oleksandr
    BEHAVIOR GENETICS, 2017, 47 (06) : 718 - 718
  • [9] An Online Platform for Densely Imputed GWAS Summary Statistics
    Demirkan, Ayse
    Zudina, Liudmila
    Balkhiyarova, Zhanna
    Kaakinen, Marika
    Prokopenko, Inga
    GENETIC EPIDEMIOLOGY, 2019, 43 (07) : 875 - 875
  • [10] Sharing GWAS summary statistics results in more citations
    Reales, Guillermo
    Wallace, Chris
    COMMUNICATIONS BIOLOGY, 2023, 6 (01)