DRUG-NEM: Optimizing drug combinations using single-cell perturbation response to account for intratumoral heterogeneity

被引:34
|
作者
Anchang, Benedict [1 ]
Davis, Kara L. [2 ]
Fienberg, Harris G. [3 ]
Williamson, Brian D. [1 ]
Bendall, Sean C. [4 ]
Karacosta, Loukia G. [1 ]
Tibshirani, Robert [5 ,6 ]
Nolan, Garry P. [3 ]
Plevritis, Sylvia K. [1 ,5 ]
机构
[1] Stanford Univ, Dept Radiol, Ctr Canc Syst Biol, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Pediat, Div Hematol & Oncol, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Microbiol & Immunol, Stanford, CA 94305 USA
[4] Stanford Univ, Dept Pathol, Sch Med, Stanford, CA 94305 USA
[5] Stanford Univ, Dept Biomed Data Sci, Stanford, CA 94305 USA
[6] Stanford Univ, Dept Stat, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
single-cell analysis; combination therapy; nested effects models; intratumor heterogeneity; leukemia; NESTED EFFECTS MODELS; MASS CYTOMETRY; LEUKEMIA; EXPRESSION; HIERARCHY; TRAIL; DEATH; LINE;
D O I
10.1073/pnas.1711365115
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
An individual malignant tumor is composed of a heterogeneous collection of single cells with distinct molecular and phenotypic features, a phenomenon termed intratumoral heterogeneity. Intratumoral heterogeneity poses challenges for cancer treatment, motivating the need for combination therapies. Single-cell technologies are now available to guide effective drug combinations by accounting for intratumoral heterogeneity through the analysis of the signaling perturbations of an individual tumor sample screened by a drug panel. In particular, Mass Cytometry Time-of-Flight (CyTOF) is a high-throughput single-cell technology that enables the simultaneous measurements of multiple (>40) intracellular and surface markers at the level of single cells for hundreds of thousands of cells in a sample. We developed a computational framework, entitled Drug Nested Effects Models (DRUG-NEM), to analyze CyTOF single-drug perturbation data for the purpose of individualizing drug combinations. DRUG-NEM optimizes drug combinations by choosing the minimum number of drugs that produce the maximal desired intracellular effects based on nested effects modeling. We demonstrate the performance of DRUG-NEM using single-cell drug perturbation data from tumor cell lines and primary leukemia samples.
引用
收藏
页码:E4294 / E4303
页数:10
相关论文
共 50 条
  • [41] Single-cell analysis reveals an adaptive, transiently heritable, slowly-dividing, drug-resistant state inhibitable by drug combinations
    Fallahi-Sichani, Mohammad
    Becker, Verena
    Izar, Benjamin
    Baker, Gregory J.
    Lin, Jia-Ren
    Boswell, Sarah A.
    Garraway, Levi A.
    Sorger, Peter K.
    CANCER RESEARCH, 2017, 77
  • [42] Research and application of single-cell sequencing in tumor heterogeneity and drug resistance of circulating tumor cells
    Dai, Zhe
    Gu, Xu-yu
    Xiang, Shou-yan
    Gong, Dan-dan
    Man, Chang-feng
    Fan, Yu
    BIOMARKER RESEARCH, 2020, 8 (01)
  • [43] Single-cell transcriptomics uncovers clonal heterogeneity linked to drug response and cellular phenotype in adult brain tumor stem cells
    Richards, Laura M.
    Whitley, Owen
    Cavalli, Florence M.
    Safikhani, Zhaleh
    Coutinho, Fiona
    Luchman, H. Artee
    Haibe-Kains, Benjamin
    Weiss, Samuel
    Dirks, Peter
    Bader, Gary
    Pugh, Trevor J.
    CANCER RESEARCH, 2019, 79 (13)
  • [44] Combi-seq for multiplexed transcriptome-based profiling of drug combinations using deterministic barcoding in single-cell droplets
    L. Mathur
    B. Szalai
    N. H. Du
    R. Utharala
    M. Ballinger
    J. J. M. Landry
    M. Ryckelynck
    V. Benes
    J. Saez-Rodriguez
    C. A. Merten
    Nature Communications, 13
  • [45] Combi-seq for multiplexed transcriptome-based profiling of drug combinations using deterministic barcoding in single-cell droplets
    Mathur, L.
    Szalai, B.
    Du, N. H.
    Utharala, R.
    Ballinger, M.
    Landry, J. J. M.
    Ryckelynck, M.
    Benes, V
    Saez-Rodriguez, J.
    Merten, C. A.
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [46] Rapid, Massively Parallel Single-Cell Drug Response Measurements via Live Cell Interferometry
    Reed, Jason
    Chun, Jennifer
    Zangle, Thomas A.
    Kalim, Sheraz
    Hong, Jason S.
    Pefley, Sarah E.
    Zheng, Xin
    Gimzewski, James K.
    Teitell, Michael A.
    BIOPHYSICAL JOURNAL, 2011, 101 (05) : 1025 - 1031
  • [47] Single-cell analysis reveals an adaptive, slowly-dividing, de-differentiated, drug-resistant cell state selectively inhibitable by drug combinations
    Fallahi-Sichani, Mohammad
    Becker, Verena
    Izar, Benjamin
    Baker, Gregory J.
    Lin, Jia-Ren
    Boswell, Sarah A.
    Garraway, Levi A.
    Sorger, Peter K.
    MOLECULAR CANCER THERAPEUTICS, 2017, 16 (10)
  • [48] Evidence of drug-response heterogeneity rapidly generated from a single cancer cell
    Wang, Rong
    Jin, Chengmeng
    Hu, Xun
    ONCOTARGET, 2017, 8 (25) : 41113 - 41124
  • [49] Single-cell transcriptional changes associated with drug tolerance and response to combination therapies in cancer
    Alexandre F. Aissa
    Abul B. M. M. K. Islam
    Majd M. Ariss
    Cammille C. Go
    Alexandra E. Rader
    Ryan D. Conrardy
    Alexa M. Gajda
    Carlota Rubio-Perez
    Klara Valyi-Nagy
    Mary Pasquinelli
    Lawrence E. Feldman
    Stefan J. Green
    Nuria Lopez-Bigas
    Maxim V. Frolov
    Elizaveta V. Benevolenskaya
    Nature Communications, 12
  • [50] Single-cell transcriptional changes associated with drug tolerance and response to combination therapies in cancer
    Aissa, Alexandre F.
    Islam, Abul B. M. M. K.
    Ariss, Majd M.
    Go, Cammille C.
    Rader, Alexandra E.
    Conrardy, Ryan D.
    Gajda, Alexa M.
    Rubio-Perez, Carlota
    Valyi-Nagy, Klara
    Pasquinelli, Mary
    Feldman, Lawrence E.
    Green, Stefan J.
    Lopez-Bigas, Nuria
    Frolov, Maxim, V
    Benevolenskaya, Elizaveta, V
    NATURE COMMUNICATIONS, 2021, 12 (01)