DRUG-NEM: Optimizing drug combinations using single-cell perturbation response to account for intratumoral heterogeneity

被引:34
|
作者
Anchang, Benedict [1 ]
Davis, Kara L. [2 ]
Fienberg, Harris G. [3 ]
Williamson, Brian D. [1 ]
Bendall, Sean C. [4 ]
Karacosta, Loukia G. [1 ]
Tibshirani, Robert [5 ,6 ]
Nolan, Garry P. [3 ]
Plevritis, Sylvia K. [1 ,5 ]
机构
[1] Stanford Univ, Dept Radiol, Ctr Canc Syst Biol, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Pediat, Div Hematol & Oncol, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Microbiol & Immunol, Stanford, CA 94305 USA
[4] Stanford Univ, Dept Pathol, Sch Med, Stanford, CA 94305 USA
[5] Stanford Univ, Dept Biomed Data Sci, Stanford, CA 94305 USA
[6] Stanford Univ, Dept Stat, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
single-cell analysis; combination therapy; nested effects models; intratumor heterogeneity; leukemia; NESTED EFFECTS MODELS; MASS CYTOMETRY; LEUKEMIA; EXPRESSION; HIERARCHY; TRAIL; DEATH; LINE;
D O I
10.1073/pnas.1711365115
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
An individual malignant tumor is composed of a heterogeneous collection of single cells with distinct molecular and phenotypic features, a phenomenon termed intratumoral heterogeneity. Intratumoral heterogeneity poses challenges for cancer treatment, motivating the need for combination therapies. Single-cell technologies are now available to guide effective drug combinations by accounting for intratumoral heterogeneity through the analysis of the signaling perturbations of an individual tumor sample screened by a drug panel. In particular, Mass Cytometry Time-of-Flight (CyTOF) is a high-throughput single-cell technology that enables the simultaneous measurements of multiple (>40) intracellular and surface markers at the level of single cells for hundreds of thousands of cells in a sample. We developed a computational framework, entitled Drug Nested Effects Models (DRUG-NEM), to analyze CyTOF single-drug perturbation data for the purpose of individualizing drug combinations. DRUG-NEM optimizes drug combinations by choosing the minimum number of drugs that produce the maximal desired intracellular effects based on nested effects modeling. We demonstrate the performance of DRUG-NEM using single-cell drug perturbation data from tumor cell lines and primary leukemia samples.
引用
收藏
页码:E4294 / E4303
页数:10
相关论文
共 50 条
  • [1] Unraveling the Drug Response Heterogeneity with Single-Cell Vibrational Phenomics
    Wang, Yue
    Wang, Yadi
    Lue, Junhong
    Li, Xueling
    CELL BIOCHEMISTRY AND BIOPHYSICS, 2024, 82 (03) : 2503 - 2510
  • [2] Tumor Heterogeneity, Single-Cell Sequencing, and Drug Resistance
    Schmidt, Felix
    Efferth, Thomas
    PHARMACEUTICALS, 2016, 9 (02)
  • [3] Single-Cell Transcriptome Analysis Uncovers Intratumoral Heterogeneity and Underlying Mechanisms for Drug Resistance in Hepatobiliary Tumor Organoids
    Zhao, Yan
    Li, Zhi-Xuan
    Zhu, Yan-Jing
    Fu, Jing
    Zhao, Xiao-Fang
    Zhang, Ya-Ni
    Wang, Shan
    Wu, Jian-Min
    Wang, Kai-Ting
    Wu, Rui
    Sui, Cheng-Jun
    Shen, Si-Yun
    Wu, Xuan
    Wang, Hong-Yang
    Gao, Dong
    Chen, Lei
    ADVANCED SCIENCE, 2021, 8 (11)
  • [4] A single-cell analysis of breast cancer cell lines to study tumour heterogeneity and drug response
    Gambardella, G.
    Viscido, G.
    Tumaini, B.
    Isacchi, A.
    Bosotti, R.
    di Bernardo, D.
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [5] A single-cell analysis of breast cancer cell lines to study tumour heterogeneity and drug response
    G. Gambardella
    G. Viscido
    B. Tumaini
    A. Isacchi
    R. Bosotti
    D. di Bernardo
    Nature Communications, 13
  • [6] Single-Cell Transcriptomics Reveals Heterogeneity and Drug Response of Human Colorectal Cancer Organoids
    Chen, Kai-Yuan
    Srinivasan, Tara
    Lin, Christopher
    Tung, Kuei-Ling
    Gao, Ziyang
    Hsu, David S.
    Lipkin, Steven M.
    Shen, Xiling
    2018 40TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2018, : 2378 - 2381
  • [7] CHARACTERIZING EPIGENETIC INTRATUMORAL HETEROGENEITY IN GLIOMA USING SINGLE-CELL BISULFITE SEQUENCING
    Johnson, Kevin C.
    Anderson, Kevin
    Courtois, Elise
    Barthel, Floris
    Samuels, Michael
    Robson, Paul
    Bulsara, Ketan
    Das, Sunit
    Verhaak, Roel
    NEURO-ONCOLOGY, 2019, 21 : 106 - 106
  • [8] scDR: Predicting Drug Response at Single-Cell Resolution
    Lei, Wanyue
    Yuan, Mengqin
    Long, Min
    Zhang, Tao
    Huang, Yu-e
    Liu, Haizhou
    Jiang, Wei
    GENES, 2023, 14 (02)
  • [9] SINGLE-CELL DRUG ACTIVITY MAPPING IN GLIOBLASTOMA IDENTIFIES EXTENDED DRUG RESPONSE HETEROGENEITY AND THERAPY-INDUCED CELLULAR PLASTICITY
    Panovska, Dena
    Antoranz, Asier
    Creemers, Pieter-Jan
    Derweduwe, Marleen
    Nasari, Pouya
    Orlando, Gabriele
    Van Gassen, Sofie
    Claeys, Annelies
    Verbeke, Tatjana
    Solie, Lien
    Sciot, Raf
    Clement, Paul
    Van der Planken, David
    Verfaillie, Michiel
    Rousseau, Frederic
    Schymkowitz, Joost
    Saeys, Yvan
    Ligon, Keith
    De Vleeschouwer, Steven
    De Smet, Frederik
    NEURO-ONCOLOGY, 2021, 23 : 167 - 167
  • [10] Massively parallel quantification of phenotypic heterogeneity in single-cell drug responses
    Yellen, Benjamin B.
    Zawistowski, Jon S.
    Czech, Eric A.
    Sanford, Caleb, I
    SoRelle, Elliott D.
    Luftig, Micah A.
    Forbes, Zachary G.
    Wood, Kris C.
    Hammerbacher, Jeff
    SCIENCE ADVANCES, 2021, 7 (38)