Poly(3,4-ethylenedioxythiophene) Sheath Over a SnO2 Hollow Spheres/Graphene Oxide Hybrid for a Durable Anode in Li-Ion Batteries

被引:60
|
作者
Bhaskar, Akkisetty [1 ]
Deepa, Melepurath [2 ]
Ramakrishna, M. [3 ]
Rao, T. N. [4 ]
机构
[1] Indian Inst Technol Hyderabad, Dept Mat Sci & Engn, Yeddumailaram 502205, Andhra Pradesh, India
[2] Indian Inst Technol Hyderabad, Dept Chem, Yeddumailaram 502205, Andhra Pradesh, India
[3] ARCI, Ctr Mech & Microstruct Characterizat, Hyderabad 500005, Andhra Pradesh, India
[4] ARCI, Ctr Nanomat, Hyderabad 500005, Andhra Pradesh, India
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2014年 / 118卷 / 14期
关键词
FACILE SYNTHESIS; LITHIUM; PERFORMANCE; STORAGE; NANOSTRUCTURES; NANOTUBES; COMPOSITE; ELECTRODE; GRAPHENE; SPHERES;
D O I
10.1021/jp412038y
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
SnO2 hollow spheres (HSs) were synthesized by a hydrothermal route by use of an organic additive (2-mercaptopropionic acid or MPA) and a cationic surfactant (cetyltrimethyl ammonium bromide or CTAB). The progressive transformation of SnO2 solid spheres to SnO2 HSs 140-150 nm in dimensions wherein a thin shell of densely packed SnO2 crystallites with a tetragonal crystal structure surrounds an empty core was followed by scanning- and transmission-electron microscopy. The roles of MPA as the HS structure-directing agent, CTAB as the moiety which prevents HS aggregation, and water as the solvent crucial for hollow core formation were independently determined by elaborate morphological analyses. With the goal of realizing superior electrochemical performance, hybrids of optimized SnO2 HSs embedded in graphene oxide (GO) nanosheets and enveloped by a sheath of a conducting polymer, poly(3,4-ethylenedioxythiophene) or PEDOT, were also synthesized; the continuity of the amorphous PEDOT coating on SnO2 HS/GO was confirmed by elemental mapping and X-ray photoelectron spectroscopy. Galvanostatic charge-discharge studies revealed an initial reversible capacity of 990 mA h g(-1) for SnO2 HSs at a current density of 100 mA g(-1), and a capacity of 400 mA h g(-1) was retained after 30 cycles. A significant improvement in cycling performance was achieved in the SnO2 HS/GO/PEDOT hybrid, as the synergy between the moderately high intrinsic electronic conductivity of GO nanosheets and the ability of PEDOT to buffer the volume change during repetitive Li+ charge discharge more efficiently compared to pristine SnO2 HS impart a capacity of 608 mA h g(-1) at a current density of 100 mA g(-1) to the hybrid, retained at the end of 150 cycles, and the latter value was similar to 1248 mA h when the mass of only the SnO2 HS in the hybrid was considered. The SnO2 HS/GO/PEDOT hybrid also showed an excellent rate capability as a capacity of 381 mA h g(-1) was attained even at a high current density of 2000 mA g(-1). We demonstrate the viability of the SnO2 HS/GO/PEDOT hybrid as a durable high performance anode for Li-ion batteries.
引用
收藏
页码:7296 / 7306
页数:11
相关论文
共 50 条
  • [21] Synthesis of SnO2 nanorods and hollow spheres and their electrochemical properties as anode materials for lithium ion batteries
    Tan, L.
    Wang, M. S.
    Liu, Y. J.
    Xiao, X. C.
    Fan, L. -Z.
    Wang, Y. D.
    MATERIALS TECHNOLOGY, 2012, 27 (02) : 191 - 195
  • [22] Layer-by-layer assembled graphene-coated mesoporous SnO2 spheres as anodes for advanced Li-ion batteries
    Shahid, Muhammad
    Yesibolati, Nulati
    Reuter, M. C.
    Ross, F. M.
    Alshareef, H. N.
    JOURNAL OF POWER SOURCES, 2014, 263 : 239 - 245
  • [23] Hollow reduced graphene oxide microspheres as a high-performance anode material for Li-ion batteries
    Mei, Riguo
    Song, Xiaorui
    Hu, Yan
    Yang, Yanfeng
    Zhang, Jingjie
    ELECTROCHIMICA ACTA, 2015, 153 : 540 - 545
  • [24] A Ternary Metal Oxide-Reduced Graphene Oxide Composite as High Capacity and Durable Anode for Li-Ion Batteries
    Prashantha Kumar, T. K. M.
    Tripathy, Debashis
    Aiyer, Hemantkumar
    Sampath, S.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2023, 170 (08)
  • [25] Self- assembled SnO2/reduced graphene oxide nanocomposites via Langmuir-Blodgett technique as anode materials for Li-ion batteries
    Ramasamy, Sriramprabha
    Nagamony, Ponpandian
    Chinnuswamy, Viswanathan
    MATERIALS LETTERS, 2018, 218 : 295 - 298
  • [26] 3D graphene network encapsulating SnO2 hollow spheres as a high-performance anode material for lithium-ion batteries
    Hu, Xiang
    Zeng, Guang
    Chen, Junxiang
    Lu, Canzhong
    Wen, Zhenhai
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (09) : 4535 - 4542
  • [27] One-Step In situ Synthesis of SnO2/Graphene Nanocomposites and Its Application As an Anode Material for Li-Ion Batteries
    Liang, Junfei
    Wei, Wei
    Zhong, Da
    Yang, Qinglin
    Li, Lidong
    Guo, Lin
    ACS APPLIED MATERIALS & INTERFACES, 2012, 4 (01) : 454 - 459
  • [28] Preparation of graphene supported porous SnO2/NiO ternary composites as high capacity anode materials for Li-ion batteries
    Huang, Ying
    Chen, Xuefang
    Zhang, Kaichuang
    Feng, Xuansheng
    MATERIALS LETTERS, 2015, 161 : 631 - 635
  • [29] Mono dispersed SnO2 nanoparticles on both sides of single layer graphene sheets as anode materials in Li-ion batteries
    Zhang, Le-Sheng
    Jiang, Ling-Yan
    Yan, Hui-Juan
    Wang, Wei D.
    Wang, Wei
    Song, Wei-Guo
    Guo, Yu-Guo
    Wan, Li-Jun
    JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (26) : 5462 - 5467
  • [30] Fabrication and Characterization of SnO2/Graphene Composites as High Capacity Anodes for Li-Ion Batteries
    Dhanabalan, Abirami
    Li, Xifei
    Agrawal, Richa
    Chen, Chunhui
    Wang, Chunlei
    NANOMATERIALS, 2013, 3 (04): : 606 - 614