On the Average Size of Glushkov's Automata

被引:26
|
作者
Nicaud, Cyril [1 ]
机构
[1] Univ Paris Est, CNRS, UMR 8049, LIGM, F-77454 Marne La Vallee, France
来源
LANGUAGE AND AUTOMATA THEORY AND APPLICATIONS | 2009年 / 5457卷
关键词
REGULAR EXPRESSIONS;
D O I
10.1007/978-3-642-00982-2_53
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Glushkov's algorithm builds an epsilon-free nondeterministic automaton from a given regular expression. In the worst case, its number of states is linear and its number of transitions is quadratic in the size of the expression. We show in this paper that in average, the number of transitions is linear.
引用
收藏
页码:626 / 637
页数:12
相关论文
共 50 条
  • [31] The Average Size of Matchings in Graphs
    Andriantiana, Eric O. D.
    Misanantenaina, Valisoa Razanajatovo
    Wagner, Stephan
    GRAPHS AND COMBINATORICS, 2020, 36 (03) : 539 - 560
  • [32] The Average Size of Matchings in Graphs
    Eric O. D. Andriantiana
    Valisoa Razanajatovo Misanantenaina
    Stephan Wagner
    Graphs and Combinatorics, 2020, 36 : 539 - 560
  • [33] The measurement of average farm size
    Lund, P
    Price, R
    JOURNAL OF AGRICULTURAL ECONOMICS, 1998, 49 (01) : 100 - 110
  • [34] An average set size theorem
    Reimer, D
    COMBINATORICS PROBABILITY & COMPUTING, 2003, 12 (01): : 89 - 93
  • [35] The determinants of average trade size
    Brennan, MJ
    Subrahmanyam, A
    JOURNAL OF BUSINESS, 1998, 71 (01): : 1 - 25
  • [36] On size reduction techniques for multitape automata
    Tamm, Hellis
    Nykanen, Matti
    Ukkonen, Esko
    THEORETICAL COMPUTER SCIENCE, 2006, 363 (02) : 234 - 246
  • [37] On the Size of Unary Probabilistic and Nondeterministic Automata
    Bianchi, Maria Paola
    Mereghetti, Carlo
    Palano, Beatrice
    Pighizzini, Giovanni
    FUNDAMENTA INFORMATICAE, 2011, 112 (2-3) : 119 - 135
  • [38] Size Lower Bounds for Quantum Automata
    Bianchi, Maria Paola
    Mereghetti, Carlo
    Palano, Beatrice
    UNCONVENTIONAL COMPUTATION AND NATURAL COMPUTATION, 2013, 7956 : 19 - 30
  • [39] On the automata size toy Presburger arithmetic
    Klaedtke, F
    19TH ANNUAL IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE, PROCEEDINGS, 2004, : 110 - 119
  • [40] LOWER BOUNDS ON THE SIZE OF SWEEPING AUTOMATA
    SIPSER, M
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1980, 21 (02) : 195 - 202