The 2-Median Problem on Cactus Graphs with Positive and Negative Weights

被引:0
|
作者
Bai, Chunsong [1 ]
Kang, Liying [2 ]
机构
[1] Fuyang Normal Univ, Coll Math, Fuyang 236041, Peoples R China
[2] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
来源
COMBINATORIAL OPTIMIZATION AND APPLICATIONS, COCOA 2017, PT I | 2017年 / 10627卷
关键词
Location problem; Median problem; Cactus graphs; Obnoxious facility;
D O I
10.1007/978-3-319-71150-8_24
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper studies the problem of locating two vertices in a cactus with positive and negative vertex weights. The problem has objective to minimize the sum of minimum weighted distances from every vertex of the cactus to the two medians. We develop an O(n(2)) algorithm for the 2-median problem, where n is the number of vertices of the cactus.
引用
收藏
页码:278 / 285
页数:8
相关论文
共 50 条
  • [31] Efficient algorithms for two generalized 2-median problems on trees
    Ku, SC
    Lu, CJ
    Wang, BF
    Lin, TC
    ALGORITHMS AND COMPUTATION, PROCEEDINGS, 2001, 2223 : 768 - 778
  • [32] The Backup 2-Center and Backup 2-Median Problems on Trees
    Wang, Hung-Lung
    Wu, Bang Ye
    Chao, Kun-Mao
    NETWORKS, 2009, 53 (01) : 39 - 49
  • [33] Using estimated missing spatial data with the 2-median model
    Griffith, DA
    ANNALS OF OPERATIONS RESEARCH, 2003, 122 (1-4) : 233 - 247
  • [34] The Next-to-Shortest Path Problem on Directed Graphs with Positive Edge Weights
    Wu, Bang Ye
    Wang, Hung-Lung
    NETWORKS, 2015, 65 (03) : 205 - 211
  • [35] Fuzzy Majority Algorithms for the 1-Median and 2-Median Problems on a Fuzzy Tree
    Taleshian, Fatemeh
    Fathali, Jafar
    Taghi-Nezhad, Nemat Allah
    FUZZY INFORMATION AND ENGINEERING, 2018, 10 (02) : 225 - 248
  • [36] Computing Minmax Regret 1-Median on a Tree Network with Positive/Negative Vertex Weights
    Bhattacharya, Binay
    Kameda, Tsunehiko
    Song, Zhao
    ALGORITHMS AND COMPUTATION, ISAAC 2012, 2012, 7676 : 588 - 597
  • [37] The obnoxious center problem on weighted cactus graphs
    Zmazek, B
    Zerovnik, J
    DISCRETE APPLIED MATHEMATICS, 2004, 136 (2-3) : 377 - 386
  • [38] Ordered median problem with demand distribution weights
    Ogryczak, Wlodzimierz
    Olender, Pawel
    OPTIMIZATION LETTERS, 2016, 10 (05) : 1071 - 1086
  • [39] Ordered median problem with demand distribution weights
    Włodzimierz Ogryczak
    Paweł Olender
    Optimization Letters, 2016, 10 : 1071 - 1086
  • [40] Separators in graphs with negative and multiple vertex weights
    Djidjev, H.N.
    Gilbert, J.R.
    Algorithmica (New York), 1999, 23 (01): : 57 - 71