Molecular Electrostatic Potential and Electron Density of Large Systems in Solution Computed with the Fragment Molecular Orbital Method

被引:17
|
作者
Fedorov, Dmitri G. [1 ]
Brekhov, Anton [2 ]
Mironov, Vladimir [2 ]
Alexeev, Yuri [3 ,4 ]
机构
[1] Natl Inst Adv Ind Sci & Technol, Res Ctr Computat Design Adv Funct Mat CDFMat, Cent 2,Umezono 1-1-1, Tsukuba, Ibaraki 3058568, Japan
[2] Lomonosov Moscow State Univ, Dept Chem, Moscow 119991, Russia
[3] Argonne Natl Lab, Argonne Leadership Comp Facil, Argonne, IL 60439 USA
[4] Argonne Natl Lab, Computat Sci Div, Argonne, IL 60439 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY A | 2019年 / 123卷 / 29期
基金
俄罗斯基础研究基金会;
关键词
ENERGY DECOMPOSITION ANALYSIS; POISSON-BOLTZMANN EQUATION; SOLVENT INTERACTIONS; CHEMISTRY; BINDING; HF; ACCURATE;
D O I
10.1021/acs.jpca.9b04936
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A solvent screening model for the molecular electrostatic potential is developed for the fragment molecular orbital method combined with the polarizable continuum model at the Hartree-Fock and density functional theory levels. The accuracy of the generated potentials is established in comparison to calculations without fragmentation. Solvent effects upon the molecular electrostatic potential and electron density of solute are discussed. The method is applied to two proteins: chignolin (PDB: 1UAO) and ovine prostaglandin H(2) synthase-1 (1EQG).
引用
收藏
页码:6281 / 6290
页数:10
相关论文
共 50 条
  • [11] Extending the power of quantum chemistry to large systems with the fragment molecular orbital method
    Fedorov, Dmitri G.
    Kitaura, Kazuo
    JOURNAL OF PHYSICAL CHEMISTRY A, 2007, 111 (30): : 6904 - 6914
  • [12] ELECTRON DEFORMATION DENSITY AND MOLECULAR ELECTROSTATIC POTENTIAL OF FERROCENE
    SCHAAD, O
    ROCH, M
    CHERMETTE, H
    WEBER, J
    JOURNAL DE CHIMIE PHYSIQUE ET DE PHYSICO-CHIMIE BIOLOGIQUE, 1987, 84 (06) : 829 - 834
  • [13] Topology of molecular electron density and electrostatic potential with DAMQT
    Lopez, Rafael
    Fernandez Rico, Jaime
    Ramirez, Guillermo
    Ema, Ignacio
    Zorrilla, David
    Kumar, Anmol
    Yeole, Sachin D.
    Gadre, Shridhar R.
    COMPUTER PHYSICS COMMUNICATIONS, 2017, 214 : 207 - 215
  • [14] Long-range corrected fragment molecular orbital density functional tight-binding method for excited states in large molecular systems
    Einsele, Richard
    Hoche, Joscha
    Mitric, Roland
    JOURNAL OF CHEMICAL PHYSICS, 2023, 158 (04):
  • [15] The three-body fragment molecular orbital method for accurate calculations of large systems
    Fedorov, Dmitri G.
    Kitaura, Kazuo
    CHEMICAL PHYSICS LETTERS, 2006, 433 (1-3) : 182 - 187
  • [16] The Effective Fragment Molecular Orbital Method: Achieving High Scalability and Accuracy for Large Systems
    Sattasathuchana, Tosaporn
    Xu, Peng
    Bertoni, Colleen
    Kim, Yu Lim
    Leang, Sarom S.
    Pham, Buu Q.
    Gordon, Mark S.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2024, 20 (06) : 2445 - 2461
  • [17] Fragment molecular orbital method: an approximate computational method for large molecules
    Kitaura, K
    Ikeo, E
    Asada, T
    Nakano, T
    Uebayasi, M
    CHEMICAL PHYSICS LETTERS, 1999, 313 (3-4) : 701 - 706
  • [18] Unrestricted density functional theory based on the fragment molecular orbital method for the ground and excited state calculations of large systems
    Nakata, Hiroya
    Fedorov, Dmitri G.
    Yokojima, Satoshi
    Kitaura, Kazuo
    Sakurai, Minoru
    Nakamura, Shinichiro
    JOURNAL OF CHEMICAL PHYSICS, 2014, 140 (14):
  • [19] Excited states in large molecular systems by the combined quantum Monte Carlo/effective fragment molecular orbital method
    Zahariev, Federico
    Findlater, Alexander
    Gordon, Mark
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 249
  • [20] Analytic Second Derivatives for the Efficient Electrostatic Embedding in the Fragment Molecular Orbital Method
    Nakata, Hiroya
    Fedorov, Dmitri G.
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2018, 39 (25) : 2039 - 2050