Homogenization of contact line dynamics

被引:0
|
作者
Glasner, K. B. [1 ]
机构
[1] Univ Arizona, Dept Math, Tucson, AZ 85721 USA
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper considers the effects of substrate inhomogeneity on the motion of the three phase contact line. The model employed assumes the slowness of the contact line in comparison to capillary relaxation. The homogenization of this free boundary problem with a spatially periodic velocity law is considered. Formal multiple scales analysis yields a local, periodic problem whose time-averaged dynamics corresponds to the homogenized front velocity. A rigorous understanding of the long time dynamics is developed using comparison techniques. Computations employing boundary integral equations are used to illustrate the consequences of the analysis. Advancing and receding contact angles, pinning and anisotropic motion can be predicted within this framework.
引用
收藏
页码:523 / 542
页数:20
相关论文
共 50 条
  • [41] Dynamics of the triple contact line on a nonisothermal heater at partial wetting
    Nikolayev, Vadim S.
    PHYSICS OF FLUIDS, 2010, 22 (08)
  • [42] Experimental study of contact line dynamics by capillary rise and fall
    Wong, PZ
    Schäffer, E
    CONTACT ANGLE, WETTABILITY AND ADHESION, VOL 3, 2003, : 25 - 37
  • [43] Transition in a numerical model of contact line dynamics and forced dewetting
    Afkhami, S.
    Buongiorno, J.
    Guion, A.
    Popinet, S.
    Saade, Y.
    Scardovelli, R.
    Zaleski, S.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 374 : 1061 - 1093
  • [44] THERMOCAPILLARY RUPTURE AND CONTACT LINE DYNAMICS IN THE HEATED LIQUID LAYERS
    Kochkin, Dmitry Yu
    Zaitsev, Dmitry, V
    Kabov, Oleg A.
    INTERFACIAL PHENOMENA AND HEAT TRANSFER, 2020, 8 (01) : 1 - 9
  • [45] On-line identification of contact dynamics in the presence of geometric uncertainties
    Verscheure, Diederik
    Swevers, Jan
    Bruyninckx, Herman
    De Schutter, Joris
    2008 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1-9, 2008, : 851 - 856
  • [46] Contact line dynamics of a superhydrophobic surface: application for immersion lithography
    Gnanappa, Arun Kumar
    Gogolides, Evangelos
    Evangelista, Fabrizio
    Riepen, Michel
    MICROFLUIDICS AND NANOFLUIDICS, 2011, 10 (06) : 1351 - 1357
  • [47] Moving contact line dynamics: from diffuse to sharp interfaces
    Kusumaatmaja, H.
    Hemingway, E. J.
    Fielding, S. M.
    JOURNAL OF FLUID MECHANICS, 2016, 788 : 209 - 227
  • [48] Roughness and dynamics of a contact line of a viscous fluid on a disordered substrate
    Moulinet, S
    Guthmann, C
    Rolley, E
    EUROPEAN PHYSICAL JOURNAL E, 2002, 8 (04): : 437 - 443
  • [49] Quantifying contact line friction via oscillating droplet dynamics
    McKinley, Gareth H.
    DROPLET, 2022, 1 (01): : 2 - 4
  • [50] State-and-rate friction in contact-line dynamics
    Lindeman C.W.
    Nagel S.R.
    Physical Review E, 2023, 107 (06)