Precursor designs for Cu2ZnSn(S,Se)4 thin-film solar cells

被引:33
|
作者
Yang, Kee-Jeong [1 ]
Sim, Jun-Hyoung [1 ]
Son, Dae-Ho [1 ]
Kim, Young-Ill [1 ]
Kim, Dae-Hwan [1 ]
Nam, Dahyun [2 ]
Cheong, Hyeonsik [2 ]
Kim, SeongYeon [3 ]
Kim, JunHo [3 ]
Kang, Jin-Kyu [1 ]
机构
[1] DGIST, Convergence Res Ctr Solar Energy, Daegu 42988, South Korea
[2] Sogang Univ, Dept Phys, Seoul 04107, South Korea
[3] Incheon Natl Univ, Dept Phys, Incheon 22012, South Korea
基金
新加坡国家研究基金会;
关键词
Thin-film solar cell; CZTSSe; Multi-stacked precursor; Defect; Secondary phase; CU2ZNSNS4; FILMS; PHASE-FORMATION; SULFUR-CONTENT; GROWTH; EFFICIENCY; SULFURIZATION; PERFORMANCE; INTERFACE; ABSORBERS; IMPACT;
D O I
10.1016/j.nanoen.2017.03.025
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
To commercialize Cu2ZnSn(S,Se)(4) (CZTSSe) thin-film solar cells, it is necessary to improve their efficiency and to develop the technological ability to produce large-area modules. Defect formation due to the secondary phase is considered to be one of the main reasons for decreased CZTSSe thin-film solar-cell efficiency. This study explores the potential capabilities of large-area thin-film solar cells by controlling the defect formation using various CZTSSe precursor designs, and by improving the characteristic uniformity within the thin-film solar cells. Alloying the precursor as a stack of discrete layers can result in lateral segregation of elements into stable-phase islands, yielding a non-uniform composition on small length scales. It is found that the application of an indiscrete layer by minimizing the precursor-layer thickness allows avoiding Zn rich inhomogeneities in the absorber that would favor formation of detrimental ZnS-ZnSe secondary phases and deep defects. Among the various precursor layers designed by considering the reaction mechanism under annealing, a sample with 15 precursor layers is found to exhibit a shallow electron-acceptor energy level, high photovoltaic conversion efficiency, and uniform characteristics over the corresponding thin-film solar cell. Based on such improvements in both the efficiency and characteristic distribution, it is expected that the commercialization of CZTSSe thin-film solar cells can be advanced.
引用
收藏
页码:52 / 61
页数:10
相关论文
共 50 条
  • [41] Synthesis and investigation of solution-processed Bi-doped Cu2ZnSn(S, Se)4 thin-film solar cells
    Zhao, Na
    Sui, Yingrui
    Zeng, Fancong
    Ma, Meiling
    Wang, Tianyue
    Wang, Zhanwu
    Yang, Lili
    Wang, Fengyou
    Liu, Huilian
    Yao, Bin
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2022, 248
  • [42] Advances in kesterite Cu2ZnSn(S, Se)4 solar cells
    Liu, Fangyang
    Wu, Sixin
    Zhang, Yi
    Hao, Xiaojing
    Ding, Liming
    SCIENCE BULLETIN, 2020, 65 (09) : 698 - 701
  • [43] Effects of Se vapor annealing on water-based solution-processed Cu2ZnSn(S,Se)4 thin-film solar cells
    Jiang, Minlin
    Tao, Quan
    Lan, Fei
    Bottenfield, Christian G.
    Yan, Xingzhong
    Li, Guangyong
    JOURNAL OF PHOTONICS FOR ENERGY, 2015, 5
  • [44] Influence of the ZnS precursor thickness on high efficiency CU2ZnSn(S,Se)4 thin-film solar cells grown by stacked-sputtering and selenization process
    Kim, Gee Yeong
    Son, Dae-Ho
    Nguyen, Trang Thi Thu
    Yoon, Seokhyun
    Kwon, Minsu
    Jeon, Chan-Wook
    Kim, Dae-Hwan
    Kang, Jin-Kyu
    Jo, William
    2015 IEEE 42ND PHOTOVOLTAIC SPECIALIST CONFERENCE (PVSC), 2015,
  • [45] Research progress on optimizing performance of Cu2ZnSnS4(Cu2ZnSn(S,Se)4) thin-film solar cells by bivalent cations doping
    Zhao X.
    Yang Y.
    Cui G.
    Liu Y.
    Ren J.
    Tian X.
    Zhu C.
    Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, 2023, 40 (11): : 6029 - 6042
  • [46] The effect of Ge content on photovoltaic property of flexible Cu2ZnSn(S,Se)4 thin film solar cells
    Sun, Luanhong
    Shen, Honglie
    Huang, Hulin
    Lin, Aming
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2019, 125 (05):
  • [47] Flexible Cu2ZnSn(S,Se)4 thin film solar cells with lithium doping via doctor blading
    Xu, Han
    Ge, Sijie
    Wang, Tao
    Gu, Ening
    Lin, Xianzhong
    SCIENCE CHINA-MATERIALS, 2024, 67 (01) : 67 - 75
  • [48] Studies on the influence of etching solution on the properties of Cu2ZnSn(S, Se4) thin film solar cells
    Shim, Hong Jae
    Ghorpade, Uma V.
    Surywanshi, Mahesh P.
    Gang, Myengil
    Kim, Jin Hyeok
    THIN SOLID FILMS, 2019, 670 : 1 - 5
  • [49] Nanoscale sharp bandgap gradient for efficiency improvement of Cu2ZnSn(S, Se)4 thin film solar cells
    Zhang, Ziqi
    Qi, Yanlong
    Zhao, Weiqiang
    Liu, Jingling
    Liu, Xinsheng
    Cheng, Ke
    Du, Zuliang
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 910
  • [50] Synthesis of CdZnS buffer layer and its impact on Cu2ZnSn(S, Se)4 thin film solar cells
    Zhang, Xuqiang
    Chen, Jiangtao
    Chen, Jianbiao
    Ge, Lin
    Li, Yan
    Zhao, Yun
    Wang, Chengwei
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2022, 33 (05) : 2399 - 2405