On stabilizing periodic orbits of a chaotic system via feedback control

被引:0
|
作者
Basso, M
Genesio, R
Giovanardi, L
Tesi, A
机构
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The paper deals with the problem of designing feedback controllers to stabilize unstable periodic orbits of chaotic systems. Moving from Pyragas time-delayed controllers, classical frequency-domain stability criteria are exploited in order to select an optimal solution. An example illustrates the efficacy of the proposed method.
引用
收藏
页码:407 / 410
页数:4
相关论文
共 50 条
  • [31] Stabilization of unstable periodic orbits for a chaotic system
    Yang, GK
    Wei, SZ
    Wei, JH
    Zeng, JC
    Wu, ZM
    Sun, GJ
    SYSTEMS & CONTROL LETTERS, 1999, 38 (01) : 21 - 26
  • [32] Periodic and Chaotic Orbits of a Discrete Rational System
    Lazaryan, N.
    Sedaghat, H.
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2015, 2015
  • [33] Stabilization of unstable periodic orbits for a chaotic system
    Genke, Yang
    Shuzhi, Wei
    Junhu, Wei
    Jianchao, Zeng
    Zhiming, Wu
    Guoji, Sun
    Systems and Control Letters, 1999, 38 (01): : 21 - 26
  • [34] ON THE PERIODIC-ORBITS OF A STRONGLY CHAOTIC SYSTEM
    AURICH, R
    STEINER, F
    PHYSICA D, 1988, 32 (03): : 451 - 460
  • [35] Stabilising periodic orbits in a chaotic system with hysteresis
    Mc Namara, H.
    INTERNATIONAL WORKSHOP ON MULTI-RATE PROCESSES AND HYSTERESIS, 2008, 138
  • [36] Stabilizing unstable periodic orbits for switched arrival system
    Tian, YP
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2004, 11A : 120 - 127
  • [37] Delayed feedback control of periodic orbits without torsion in nonautonomous chaotic systems: Theory and experiment
    Tamasevicius, A.
    Mykolaitis, G.
    Pyragas, V.
    Pyragas, K.
    PHYSICAL REVIEW E, 2007, 76 (02):
  • [38] Generating chaotic system via nonlinear feedback control
    Li, Guanlin
    Chen, Xiyou
    2006 CHINESE CONTROL CONFERENCE, VOLS 1-5, 2006, : 1475 - +
  • [39] Effective two-level algorithm for stabilizing periodic orbits of chaotic systems
    Basinski, Radoslaw
    Siwek, Krzysztof
    PRZEGLAD ELEKTROTECHNICZNY, 2020, 96 (12): : 140 - 145
  • [40] Feedback control methods for stabilizing unstable equilibrium points in a new chaotic system
    Zhu, Congxu
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (7-8) : 2441 - 2446