LAN property for some fractional type Brownian motion

被引:0
|
作者
Cohen, Serge [1 ]
Gamboa, Fabrice [1 ]
Lacaux, Celine [2 ,3 ]
Loubes, Jean-Michel [1 ]
机构
[1] Inst Math Toulouse, UMR 5219, F-31062 Toulouse 9, France
[2] Univ Lorraine, IECL, Inst Elie Carton, UMR 7502, Vandoeuvre Les Nancy, France
[3] Inria, F-54600 Villers Les Nancy, France
关键词
Asymptotic Statistics; Maximum Likelihood expansion; Fractional Brownian motion; LOCAL ASYMPTOTIC NORMALITY; PARAMETER; STATIONARY;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study asymptotic expansion of the likelihood of a certain class of Gaussian processes characterized by their spectral density f(theta). We consider the case where f(theta)(x) similar to(x -> 0) vertical bar x vertical bar L--alpha(theta)(theta)(x) with L-theta a slowly varying function and alpha(theta) is an element of (-infinity, 1). We prove LAN property for these models which include in particular fractional Brownian motion or ARFIMA processes.
引用
收藏
页码:91 / 106
页数:16
相关论文
共 50 条
  • [1] FRACTIONAL BROWNIAN MOTION AND THE MARKOV PROPERTY
    Carmona, Philippe
    Coutin, Laure
    [J]. ELECTRONIC COMMUNICATIONS IN PROBABILITY, 1998, 3 : 95 - 107
  • [2] Some aspects of fractional Brownian motion
    Duncan, TE
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 47 (07) : 4775 - 4782
  • [3] Some It Formulas with Respect to Mixed Fractional Brownian Motion and Brownian Motion
    舒慧生
    阚秀
    周海涛
    [J]. Journal of Donghua University(English Edition), 2010, 27 (04) : 530 - 534
  • [4] ANOMALOUS DIFFUSION - THE THINNING PROPERTY OF FRACTIONAL BROWNIAN MOTION
    Sikora, Grzegorz
    [J]. ACTA PHYSICA POLONICA B, 2012, 43 (05): : 1157 - 1167
  • [5] The fractional Brownian motion property of the atmospheric refraction index
    Pérez, DG
    Garavaglia, M
    [J]. 4TH IBEROAMERICAN MEETING ON OPTICS AND 7TH LATIN AMERICAN MEETING ON OPTICS, LASERS, AND THEIR APPLICATIONS, 2001, 4419 : 503 - 505
  • [6] Some extensions of fractional Brownian motion and sub-fractional Brownian motion related to particle systems
    Bojdecki, Tomasz
    Gorostiza, Luis G.
    Talarczyk, Anna
    [J]. ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2007, 12 : 161 - 172
  • [7] On some possible generalizations of fractional Brownian motion
    Lim, SC
    Muniandy, SV
    [J]. PHYSICS LETTERS A, 2000, 266 (2-3) : 140 - 145
  • [8] Some properties of the integrated fractional Brownian motion
    Morozewicz, Aneta
    Filatova, Darya
    El-Nouty, Charles
    [J]. 2015 20TH INTERNATIONAL CONFERENCE ON METHODS AND MODELS IN AUTOMATION AND ROBOTICS (MMAR), 2015, : 62 - 65
  • [9] Some generalization of fractional Brownian motion and control
    Bertrand, P
    Bardet, JM
    [J]. OPTIMAL CONTROL AND PARTIAL DIFFERENTIAL EQUATIONS: IN HONOR OF PROFESSOR ALAIN BENSOUSSAN'S 60TH BIRTHDAY, 2001, : 221 - 230
  • [10] Fractional Brownian motion and multifractional Brownian motion of Riemann-Liouville type
    Lim, SC
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (07): : 1301 - 1310