FRACTIONAL BROWNIAN MOTION AND THE MARKOV PROPERTY

被引:32
|
作者
Carmona, Philippe [1 ]
Coutin, Laure [1 ]
机构
[1] Univ Paul Sabatier, Lab Stat & Probabil, 118 Route Narbonne, F-31062 Toulouse 4, France
关键词
Gaussian processes; Markov Processes; Numerical Approximation; Ergodic Theorem;
D O I
10.1214/ECP.v3-998
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Fractional Brownian motion belongs to a class of long memory Gaussian processes that can be represented as linear functionals of an infinite dimensional Markov process. This leads naturally to : An efficient algorithm to approximate the process. An ergodic theorem which applies to functionals of the type integral(t)(0)phi(V-h(s)) ds where V-h(s) = integral(s)(0) h(s - u) dB(u). and B is a real Brownian motion.
引用
收藏
页码:95 / 107
页数:13
相关论文
共 50 条
  • [1] THE MARKOV PROPERTY OF LOCAL TIMES OF BROWNIAN MOTION INDEXED BY THE BROWNIAN TREE
    Le Gall, Jean-Francois
    [J]. ANNALS OF PROBABILITY, 2024, 52 (01): : 188 - 216
  • [2] Hurst exponents, Markov processes, and fractional Brownian motion
    McCauley, Joseph L.
    Gunaratne, Gemunu H.
    Bassler, Kevin E.
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 379 (01) : 1 - 9
  • [3] THE STRONG MARKOV PROPERTY FOR FERMION BROWNIAN-MOTION
    APPLEBAUM, D
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 1986, 65 (02) : 273 - 291
  • [4] ANOMALOUS DIFFUSION - THE THINNING PROPERTY OF FRACTIONAL BROWNIAN MOTION
    Sikora, Grzegorz
    [J]. ACTA PHYSICA POLONICA B, 2012, 43 (05): : 1157 - 1167
  • [5] LAN property for some fractional type Brownian motion
    Cohen, Serge
    Gamboa, Fabrice
    Lacaux, Celine
    Loubes, Jean-Michel
    [J]. ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2013, 10 (01): : 91 - 106
  • [6] The fractional Brownian motion property of the atmospheric refraction index
    Pérez, DG
    Garavaglia, M
    [J]. 4TH IBEROAMERICAN MEETING ON OPTICS AND 7TH LATIN AMERICAN MEETING ON OPTICS, LASERS, AND THEIR APPLICATIONS, 2001, 4419 : 503 - 505
  • [7] Is it Brownian or fractional Brownian motion?
    Li, Meiyu
    Gencay, Ramazan
    Xue, Yi
    [J]. ECONOMICS LETTERS, 2016, 145 : 52 - 55
  • [8] THE ABSENCE OF ARBITRAGE PROPERTY IN MIXED FRACTIONAL BROWNIAN MOTION SETTING
    Halima, Hennoune
    Abdeldjebbar, Kandouci
    [J]. BULLETIN OF THE INSTITUTE OF MATHEMATICS ACADEMIA SINICA NEW SERIES, 2021, 16 (01): : 63 - 77
  • [9] Sampling fractional Brownian motion in presence of absorption: A Markov chain method
    Hartmann, Alexander K.
    Majumdar, Satya N.
    Rosso, Alberto
    [J]. PHYSICAL REVIEW E, 2013, 88 (02):
  • [10] A Markov additive risk process in dimension 2 perturbed by a fractional Brownian motion
    Rabehasaina, Landy
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2012, 122 (08) : 2925 - 2960