Short-Term Load Forecasting of Ontario Electricity Market by Considering the Effect of Temperature

被引:0
|
作者
Sahay, Kishan Bhushan [1 ]
Kumar, Nimish [1 ]
Tripathi, M. M. [1 ]
机构
[1] Delhi Technol Univ, Dept Elect Engn, New Delhi, India
关键词
Mean absolute error (MAE); mean absolute percentage error (MAPE); neural network (NN); power system; short-term load forecasting;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Short-term load forecasting is an essential instrument in power system pluming, operation, and control. Many operating decisions are based on load forecasts, such as dispatch scheduling of generating capacity, reliability analysis, and maintenance planning for the generators. This paper discusses significant role of artificial intelligence (AI) in short-term load forecasting (STLF), that is, the day-ahead hourly forecast of the power system load. A new artificial neural network (ANN) has been designed to compute the forecasted load. The data used in the modeling of ANN are hourly historical data of the temperature and electricity load. The ANN model is trained on hourly data from Ontario Electricity Market from 2007 to 2011 and tested on out-of-sample data from 2012. Simulation results obtained have shown that day-ahead hourly forecasts of load using proposed ANN is very accurate with very less error. However load forecast considering the effect of temperature is better than without taking it as input parameter.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Research in residential electricity characteristics and short-term load forecasting
    Feng, H. (fenghaixiashiwo@163.com), 1600, Universitas Ahmad Dahlan, Jalan Kapas 9, Semaki, Umbul Harjo,, Yogiakarta, 55165, Indonesia (11):
  • [22] Online SARIMA applied for short-term electricity load forecasting
    Nguyen Thi Ngoc Anh
    Nguyen Nhat Anh
    Tran Ngoc Thang
    Vijender Kumar Solanki
    Rubén González Crespo
    Nguyen Quang Dat
    Applied Intelligence, 2024, 54 : 1003 - 1019
  • [23] Periodically correlated models for short-term electricity load forecasting
    Caro, Eduardo
    Juan, Jesus
    Cara, Javier
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 364
  • [24] Short-term Electricity Load Forecasting with Time Series Analysis
    Hung Nguyen
    Hansen, Christian K.
    2017 IEEE INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT (ICPHM), 2017, : 214 - 221
  • [25] Short-Term Load Forecasting Using Generalized Regression and Probabilistic Neural Networks in the Electricity Market
    Tripathi, M.M.
    Upadhyay, K.G.
    Singh, S.N.
    Electricity Journal, 2008, 21 (09): : 24 - 34
  • [26] Online SARIMA applied for short-term electricity load forecasting
    Anh, Nguyen Thi Ngoc
    Anh, Nguyen Nhat
    Thang, Tran Ngoc
    Solanki, Vijender Kumar
    Crespo, Ruben Gonzalez
    Dat, Nguyen Quang
    APPLIED INTELLIGENCE, 2024, 54 (01) : 1003 - 1019
  • [27] GA-ANN Short-Term Electricity Load Forecasting
    Viegas, Joaquim L.
    Vieira, Susana M.
    Melicio, Rui
    Mendes, Victor M. F.
    Sousa, Joao M. C.
    TECHNOLOGICAL INNOVATION FOR CYBER-PHYSICAL SYSTEMS, 2016, 470 : 485 - 493
  • [28] Progress in Research on the Methods of Electricity Short-Term Load Forecasting
    Ye, Ning
    Liu, Yong
    Ma, Jiajun
    Wang, Yong
    POWER AND ENERGY ENGINEERING CONFERENCE 2010, 2010, : 558 - +
  • [29] Forecasting short-term power prices in the Ontario Electricity Market (OEM) with a fuzzy logic based inference system
    Department of Business Administration, Rensselaer Polytechnic Institute, Troy, NY, United States
    不详
    Util. Policy, 2008, 1 (39-48): : 39 - 48
  • [30] Application of SOM neural networks to short-term load forecasting: The Spanish electricity market case study
    Lopez, M.
    Valero, S.
    Senabre, C.
    Aparicio, J.
    Gabaldon, A.
    ELECTRIC POWER SYSTEMS RESEARCH, 2012, 91 : 18 - 27