A Duhamel approach for the Langevin equations with holonomic constraints

被引:4
|
作者
Kallemov, B. [1 ]
Miller, G. H. [1 ,2 ]
Trebotich, D. [2 ,3 ]
机构
[1] Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA
[2] Univ Calif Berkeley, Lawrence Berkeley Lab, Appl Numer Algorithms Grp, Berkeley, CA 94720 USA
[3] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA USA
基金
美国国家科学基金会;
关键词
stochastic particle dynamics; RATTLE; particle-fluid coupling; MOLECULAR-DYNAMICS; SYSTEMS;
D O I
10.1080/08927020802541327
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
To simulate polymer flows in microscale environments we have developed a numerical method that couples stochastic particle dynamics with an efficient incompressible Navier-Stokes solver. Here, we examine properties of the particle solver alone. We derive a Duhamel-form stochastic particle method for freely jointed polymers and demonstrate that it achieves 2-order weak convergence and 3/2-order strong convergence with holonomic constraints. For time steps approaching the 1/gamma relaxation time, our method displays greatly enhanced stability relative to comparable solvers based on linearised dynamics. Under these same conditions, our method has solution errors that are approximately six orders of magnitude smaller than that for the linearised algorithm.
引用
收藏
页码:440 / 447
页数:8
相关论文
共 50 条