DIFFERENT METHODOLOGIES AND USES OF THE HURST EXPONENT IN ECONOPHYSICS

被引:0
|
作者
Lopez Garcia, Maria De las Nieves [1 ]
Ramos Requena, Jose Pedro [1 ]
机构
[1] Univ Almeria, Dept Econ & Empresa, Almeria, Spain
来源
ESTUDIOS DE ECONOMIA APLICADA | 2019年 / 37卷 / 02期
关键词
econophysics; fractal market; models and Hurst exponent; LONG-RANGE DEPENDENCE; EMERGING MARKETS; TIME; MEMORY; CHAOS;
D O I
暂无
中图分类号
F [经济];
学科分类号
02 ;
摘要
The field of econophysics is still very young and is in constant evolution. One of the great innovations in finance coming from econophysics is the fractal market hypothesis, which contradicts the traditional efficient market hypothesis. From fractal market hypothesis new studies/models have emerged. The aim of this work is to review the bibliography on some of these new models, specifically those based on the Hurst exponent, explaining how they work, outline different forms of calculation and, finally, highlighting some of the empirical applications they have within the study of the financial market.
引用
收藏
页码:96 / 108
页数:13
相关论文
共 50 条
  • [31] Minimal model of diffusion with time changing Hurst exponent
    Slezak, Jakub
    Metzler, Ralf
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2023, 56 (35)
  • [32] Detecting persistence of meteorological drought via the Hurst exponent
    Tatli, Hasan
    [J]. METEOROLOGICAL APPLICATIONS, 2015, 22 (04) : 763 - 769
  • [33] Time and scale Hurst exponent analysis for financial markets
    Matos, Jose A. O.
    Gama, Silvio M. A.
    Ruskin, Heather J.
    Al Sharkasi, Adel
    Crane, Martin
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2008, 387 (15) : 3910 - 3915
  • [34] The Hurst exponent of Fermi gamma-ray bursts
    MacLachlan, G. A.
    Shenoy, A.
    Sonbas, E.
    Coyne, R.
    Dhuga, K. S.
    Eskandarian, A.
    Maximon, L. C.
    Parke, W. C.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2013, 436 (04) : 2907 - 2914
  • [35] Comment on "The Hurst exponent and long-time correlation"
    van Milligen, BP
    Hidalgo, C
    Carreras, BA
    [J]. PHYSICS OF PLASMAS, 2000, 7 (12) : 5267 - 5268
  • [36] Hurst exponent estimation from short time series
    Martin Dlask
    Jaromir Kukal
    [J]. Signal, Image and Video Processing, 2019, 13 : 263 - 269
  • [37] Hyperspectral redundancy detection and modeling with local Hurst exponent
    Li, Jianhui
    Li, Qiaozhi
    Wang, Fang
    Liu, Fan
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2022, 592
  • [38] A State Space Approach and Hurst Exponent for Ensemble Predictors
    Szupiluk, Ryszard
    Zabkowski, Tomasz
    [J]. ENGINEERING APPLICATIONS OF NEURAL NETWORKS, EANN 2013, PT I, 2013, 383 : 154 - 164
  • [39] IMAGE BASED SMOKE DETECTION WITH LOCAL HURST EXPONENT
    Maruta, Hidenori
    Nakamura, Akihiro
    Yamamichi, Takeshi
    Kurokawa, Fujio
    [J]. 2010 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, 2010, : 4653 - 4656
  • [40] Spectrum-based estimators of the bivariate Hurst exponent
    Kristoufek, Ladislav
    [J]. PHYSICAL REVIEW E, 2014, 90 (06):