DIFFERENT METHODOLOGIES AND USES OF THE HURST EXPONENT IN ECONOPHYSICS

被引:0
|
作者
Lopez Garcia, Maria De las Nieves [1 ]
Ramos Requena, Jose Pedro [1 ]
机构
[1] Univ Almeria, Dept Econ & Empresa, Almeria, Spain
来源
ESTUDIOS DE ECONOMIA APLICADA | 2019年 / 37卷 / 02期
关键词
econophysics; fractal market; models and Hurst exponent; LONG-RANGE DEPENDENCE; EMERGING MARKETS; TIME; MEMORY; CHAOS;
D O I
暂无
中图分类号
F [经济];
学科分类号
02 ;
摘要
The field of econophysics is still very young and is in constant evolution. One of the great innovations in finance coming from econophysics is the fractal market hypothesis, which contradicts the traditional efficient market hypothesis. From fractal market hypothesis new studies/models have emerged. The aim of this work is to review the bibliography on some of these new models, specifically those based on the Hurst exponent, explaining how they work, outline different forms of calculation and, finally, highlighting some of the empirical applications they have within the study of the financial market.
引用
收藏
页码:96 / 108
页数:13
相关论文
共 50 条
  • [1] Comment on Hurst exponent
    Kärner, O
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2001, 28 (19) : 3825 - 3826
  • [2] Forecasting VIX with Hurst Exponent
    Bianchi, Sergio
    Di Sciorio, Fabrizio
    Mattera, Raffaele
    [J]. MATHEMATICAL AND STATISTICAL METHODS FOR ACTUARIAL SCIENCES AND FINANCE, MAF 2022, 2022, : 90 - 95
  • [3] Application of the Hurst exponent in ecology
    Wang, Yu-Zhi
    Li, Bo
    Wang, Ren-Qing
    Su, Jing
    Rong, Xiao-Xia
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (08) : 2129 - 2131
  • [4] Estimation of Hurst exponent revisited
    Mielniczuk, J.
    Wojdyllo, P.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 51 (09) : 4510 - 4525
  • [5] Bayesian Approach to Hurst Exponent Estimation
    Dlask, Martin
    Kukal, Jaromir
    Vysata, Oldrich
    [J]. METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2017, 19 (03) : 973 - 983
  • [6] An Experiment on the Hurst Exponent based on FARIMA
    Pu, Chen
    Ni, Li
    Jie, Xu
    Ting, Zhao
    Chen, Liu
    [J]. PROCEEDINGS OF THE 2017 5TH INTERNATIONAL CONFERENCE ON MACHINERY, MATERIALS AND COMPUTING TECHNOLOGY (ICMMCT 2017), 2017, 126 : 1212 - 1218
  • [7] Wavelet packet computation of the Hurst exponent
    Jones, CL
    Lonergan, GT
    Mainwaring, DE
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (10): : 2509 - 2527
  • [8] Bayesian Approach to Hurst Exponent Estimation
    Martin Dlask
    Jaromir Kukal
    Oldrich Vysata
    [J]. Methodology and Computing in Applied Probability, 2017, 19 : 973 - 983
  • [9] The Hurst exponent in energy futures prices
    Serletis, Apostolos
    Rosenberg, Aryeh Adam
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 380 : 325 - 332
  • [10] The sampling properties of Hurst exponent estimates
    Ellis, Craig
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 375 (01) : 159 - 173