Equilibrium in the clinoptilolite-H2O system

被引:0
|
作者
Carey, JW
Bish, DL
机构
关键词
D O I
暂无
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
A thermodynamic formulation for the sorption of H2O in clinoptilolite has been obtained from analysis of equilibrium data collected by thermogravimetry on near end-member Ca-, Na-, and K-exchanged natural clinoptilolite (Fish Creek Mountains, Nevada). Temperature and pressure of the experiments ranged from 25 to 250 degrees C and 0.2 to 35 mbar H2O vapor pressure. Equilibrium of three clinoptilolite species was successfully formulated with the following expression for the Gibbs free energy of hydration as a function of temperature and pressure: Delta mu(Hy)/T = Delta mu(Hy)(0)/T-0 + <Delta(H)over bar>(0)(Hy)>(1/T - 1/T-0) - 3R[ln(T/T-0) + (T-0/T - 1)] + R ln[theta/(1 - theta)P] + W-1/T theta + W-2/T theta(2) where R is the gas constant, P is the vapor pressure of H2O, W-1 and W-2 are the excess mixing parameters, and theta is the ratio H2O/(maximum H2O) with maximum water contents for the K, Na, and Ca end-members of 13.49, 15.68, and 16.25 wt%, respectively. The molar Gibbs free energy of hydration for calcium, sodium, and potassium clinoptilolite is -36.13 +/- 3.02, -29.68 +/- 3.77, and -25.53 +/- 1.37 kJ/mol H2O, respectively. The molar enthalpy of hydration for these phases is -76.92 +/- 2.88, -74.19 +/- 3.46, and -67.78 +/- 1.25 kJ/mol H2O. The thermodynamic formulation is applied to the occurrence of clinoptilolite at Yucca Mountain, Nevada, where the proposed emplacement of nuclear waste would lead to heating of clinoptilolite-bearing tuffs. Rock units with abundant clinoptilolite (or by analogy other hydrous phases) would remain significantly cooler than units with anhydrous minerals and would evolve a substantial volume of water.
引用
收藏
页码:952 / 962
页数:11
相关论文
共 50 条
  • [31] Equilibrium in the ternary system CrO3-SO2-H2O
    Rakowsky, AW
    Tarassenkow, DN
    ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE, 1928, 174 (01): : 91 - 96
  • [32] PHASE EQUILIBRIUM OF SBCL3-HCL-H2O SYSTEM
    Duan
    Zhang
    Zhao
    Transactions of Nonferrous Metals Society of China, 1994, (01) : 15 - 19
  • [33] Thermodynamic equilibrium study of Bi-NO3+-H2O system
    Qin, Yihong
    Wang, Yunyan
    Zhongnan Gongye Daxue Xuebao/Journal of Central South University of Technology, 1999, 30 (05): : 497 - 500
  • [34] Thermodynamic equilibrium of Bi3+-Cl--H2O system
    Qin, Yi-hong
    Wang, Yun-yan
    Zhongguo Youse Jinshu Xuebao/Chinese Journal of Nonferrous Metals, 2000, 10 (02): : 245 - 249
  • [35] Equilibrium Potential–pH Diagram of the CdTe–H2O System
    A. G. Voloshchuk
    N. I. Tsipishchuk
    Inorganic Materials, 2002, 38 : 1114 - 1116
  • [36] Equilibrium Studies on the System H2O-H2O2-CO(NH2)2-C3H8
    Gao, Yuming
    Cao, Jilin
    Chen, Panpan
    Guo, Hongfei
    Tan, Zhaoyang
    FUNDAMENTAL OF CHEMICAL ENGINEERING, PTS 1-3, 2011, 233-235 : 1690 - 1693
  • [37] EQUILIBRIUM STUDIES ON H2S-NH3-H2O SYSTEM .I.
    LEYKO, J
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES CHIMIQUES, 1964, 12 (04): : 275 - &
  • [38] Study on phase equilibrium of MnS2O6-MnSO4-H2O system
    Liu, Xiaoguo
    Huaxue Gongcheng/Chemical Engineering, 1996, 24 (05): : 71 - 74
  • [39] THE CAO-AL2O3-CASO4-H2O SYSTEM EQUILIBRIUM STATES
    NERAD, I
    SAUSOVA, S
    STEVULA, L
    CEMENT AND CONCRETE RESEARCH, 1994, 24 (02) : 259 - 266
  • [40] EQUILIBRIUM SOLID-PHASES IN THE PARTIAL SYSTEM CAO.SIO2.H2O-NA2O.AL2O3-H2O
    ALEKSEEV, AI
    JOURNAL OF APPLIED CHEMISTRY OF THE USSR, 1983, 56 (12): : 2474 - 2478