Equilibrium in the clinoptilolite-H2O system

被引:0
|
作者
Carey, JW
Bish, DL
机构
关键词
D O I
暂无
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
A thermodynamic formulation for the sorption of H2O in clinoptilolite has been obtained from analysis of equilibrium data collected by thermogravimetry on near end-member Ca-, Na-, and K-exchanged natural clinoptilolite (Fish Creek Mountains, Nevada). Temperature and pressure of the experiments ranged from 25 to 250 degrees C and 0.2 to 35 mbar H2O vapor pressure. Equilibrium of three clinoptilolite species was successfully formulated with the following expression for the Gibbs free energy of hydration as a function of temperature and pressure: Delta mu(Hy)/T = Delta mu(Hy)(0)/T-0 + <Delta(H)over bar>(0)(Hy)>(1/T - 1/T-0) - 3R[ln(T/T-0) + (T-0/T - 1)] + R ln[theta/(1 - theta)P] + W-1/T theta + W-2/T theta(2) where R is the gas constant, P is the vapor pressure of H2O, W-1 and W-2 are the excess mixing parameters, and theta is the ratio H2O/(maximum H2O) with maximum water contents for the K, Na, and Ca end-members of 13.49, 15.68, and 16.25 wt%, respectively. The molar Gibbs free energy of hydration for calcium, sodium, and potassium clinoptilolite is -36.13 +/- 3.02, -29.68 +/- 3.77, and -25.53 +/- 1.37 kJ/mol H2O, respectively. The molar enthalpy of hydration for these phases is -76.92 +/- 2.88, -74.19 +/- 3.46, and -67.78 +/- 1.25 kJ/mol H2O. The thermodynamic formulation is applied to the occurrence of clinoptilolite at Yucca Mountain, Nevada, where the proposed emplacement of nuclear waste would lead to heating of clinoptilolite-bearing tuffs. Rock units with abundant clinoptilolite (or by analogy other hydrous phases) would remain significantly cooler than units with anhydrous minerals and would evolve a substantial volume of water.
引用
收藏
页码:952 / 962
页数:11
相关论文
共 50 条
  • [1] Equilibrium in the system H2O-MgBr2
    Getman, FH
    RECUEIL DES TRAVAUX CHIMIQUES DES PAYS-BAS, 1935, 54 : 866 - 872
  • [2] EQUILIBRIUM IN THE SYSTEM GEO2-H2-GE-H2O
    YOKOKAWA, T
    KOIZUMI, M
    SHIMOJI, M
    NIWA, K
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1957, 79 (13) : 3365 - 3367
  • [3] EQUILIBRIUM IN CU(HCOO)2 - PARA H2O-HCOOH-H2O SYSTEM
    OSTANNII, NI
    ZHARKOVA, LA
    EROFEEV, BV
    ZHURNAL FIZICHESKOI KHIMII, 1973, 47 (02): : 450 - 451
  • [4] EQUILIBRIUM IN SYSTEM CASO4.2H2O-CASO4.1/2H2O-H2O
    SATAVA, V
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1974, 57 (09) : 385 - 387
  • [5] EQUILIBRIUM IN THE SYSTEM MGO-CO2-H2O
    TELITCHENKO, VA
    TSEITLIN, NA
    JOURNAL OF APPLIED CHEMISTRY OF THE USSR, 1979, 52 (09): : 1886 - 1890
  • [6] COMPOSITION AND EQUILIBRIUM IN THE H2SO4-H2O SYSTEM
    ZARAKHANI, NG
    VINNIK, MI
    ZHURNAL FIZICHESKOI KHIMII, 1963, 37 (03): : 503 - 509
  • [7] Equilibrium in the system K2O-CrO3-H2O
    Koppel, J
    Blumenthal, R
    ZEITSCHRIFT FUR ANORGANISCHE CHEMIE, 1907, 53 (02): : 228 - 267
  • [8] EQUILIBRIUM IN THE SYSTEM ALF3-H2O
    YATLOV, VS
    PINAYEVSKAYA, EN
    ZHURNAL OBSHCHEI KHIMII, 1946, 16 (01): : 27 - 32
  • [9] PHASE EQUILIBRIUM IN THE SYSTEM NIO-H2O
    ROMO, LA
    JOURNAL OF PHYSICAL CHEMISTRY, 1956, 60 (07): : 1021 - 1022
  • [10] EQUILIBRIUM IN THE SYSTEM BECL2-BACL2-H2O
    NOVOSSELOVA, A
    DANILEVITCH, R
    TICHONOVA, A
    ZHURNAL OBSHCHEI KHIMII, 1946, 16 (03): : 439 - 442