An integrable semi-discrete Degasperis-Procesi equation

被引:7
|
作者
Feng, Bao-Feng [1 ]
Maruno, Ken-ichi [2 ]
Ohta, Yasuhiro [3 ]
机构
[1] Univ Texas Rio Grande Valley, Sch Math & Stat Sci, Edinburg, TX 78539 USA
[2] Waseda Univ, Dept Appl Math, Tokyo 1698050, Japan
[3] Kobe Univ, Dept Math, Kobe, Hyogo 6578501, Japan
基金
中国国家自然科学基金;
关键词
CKP hierarchy; tau-functions; bilinear equations; semi-discrete Degasperis-Procesi equation; SHALLOW-WATER EQUATION; PEAKON SOLUTIONS; SOLITON SOLUTION; WAVES;
D O I
10.1088/1361-6544/aa67fc
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Based on our previous work on the Degasperis-Procesi equation (Feng et al J. Phys. A: Math. Theor. 46 045205) and the integrable semi-discrete analogue of its short wave limit (Feng et al J. Phys. A: Math. Theor. 48 135203), we derive an integrable semi-discrete Degasperis-Procesi equation by Hirota's bilinear method. Furthermore, N-soliton solution to the semi-discrete Degasperis-Procesi equation is constructed. It is shown that both the proposed semi-discrete Degasperis-Procesi equation, and its N-soliton solution converge to ones of the original Degasperis-Procesi equation in the continuum limit.
引用
收藏
页码:2246 / 2267
页数:22
相关论文
共 50 条