Electrically conductive and optically transparent polyaniline/montmorillonite nanocomposite thin films

被引:19
|
作者
Kulhankova, Lenka [1 ]
Tokarsky, Jonas [2 ,3 ]
Matejka, Vlastimil [2 ]
Peikertova, Pavlina [2 ]
Vallova, Silvie [1 ]
Mamulova Kutlakova, Katerina [2 ]
Styskala, Vitezslav [4 ]
Capkova, Pavla [5 ]
机构
[1] Tech Univ Ostrava, VSB, Fac Met & Mat Engn, Ostrava 70833, Czech Republic
[2] Tech Univ Ostrava, VSB, Nanotechnol Ctr, Ostrava 70833, Czech Republic
[3] Tech Univ Ostrava, VSB, CE IT4Innovat, Ostrava 70833, Czech Republic
[4] Tech Univ Ostrava, VSB, Fac Elect Engn & Comp Sci, Ostrava 70833, Czech Republic
[5] Univ JE Purkyne, Fac Sci, Usti Nad Labem 40096, Czech Republic
关键词
Polyaniline; Montmorillonite; Nanocomposite; Thin film; Conductivity; Transparency; SPECTROSCOPIC CHARACTERIZATION; COMPOSITE FILMS; POLYANILINE; PROPERTY; OXIDATION; CLAY;
D O I
10.1016/j.tsf.2014.05.006
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Simple technology (i.e. one-step polymerization of anilinium sulfate in the presence of montmorillonite) has been used to prepare polyaniline/montmorillonite (PANI/MMT) nanocomposite thin films. The present work is focused on the effect of MMT content on the thickness, morphology and electrical conductivity of PANI/MMT nanocomposite films. An increase in MMT content led to an increase in film thickness and surface roughness and to a decrease in conductivity from a maximum value of 356 S/m to a minimum value of 76 S/m, while for pure PANI films, prepared using the same polymerization procedure (from anilinium sulfate), the conductivity was 59 S/m. On the other hand, the MMT content exhibited a significant impact on the optical transparency of PANI/MMT nanocomposite films, which was limited to the range of 450-650 nm in contrast with pure PANI films showing non-zero transparency in the whole measured range of wave length 300-800 nm. Atomic force microscopy clearly proved the alignment of PANI chains in nanocomposite films in comparison with pure PANI films. Scanning electron microscopy revealed in detail the significant difference in surface morphology between pure PANI films and PANI nanofilms covering the MMT particles. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:319 / 325
页数:7
相关论文
共 50 条
  • [21] Frontier of transparent conductive oxide thin films
    Hosono, H
    Ohta, H
    Orita, M
    Ueda, K
    Hirano, M
    VACUUM, 2002, 66 (3-4) : 419 - 425
  • [22] PLD of transparent and conductive AZO thin films
    Anyanwu, V. O.
    Moodley, M. K.
    CERAMICS INTERNATIONAL, 2023, 49 (03) : 5311 - 5318
  • [23] PRODUCTION OF CONDUCTIVE AND TRANSPARENT THIN-FILMS
    KIENEL, G
    GALLUS, G
    JAPANESE JOURNAL OF APPLIED PHYSICS, 1974, : 479 - 482
  • [24] Transparent conductive properties of TiON thin films
    Akazawa, Housei
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2022, 40 (01):
  • [25] Promising advances in transparent conductive thin films
    Kreysar, Doug
    Information Display, 2020, 36 (04)
  • [26] Radio-Frequency-Transparent, Electrically Conductive Graphene Nanoribbon Thin Films as Deicing Heating Layers
    Volman, Vladimir
    Zhu, Yu
    Raji, Abdul-Rahman O.
    Genorio, Bostjan
    Lu, Wei
    Xiang, Changsheng
    Kittrell, Carter
    Tour, James M.
    ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (01) : 298 - 304
  • [27] Preparation of electrically conductive polystyrene/carbon nanofiber nanocomposite films
    Sun, Luyi
    O'Reilly, Jonathan Y.
    Tien, Chi-Wei
    Sue, Hung-Jue
    JOURNAL OF CHEMICAL EDUCATION, 2008, 85 (08) : 1105 - 1107
  • [28] Preparation of optically transparent films of poly(methyl methacrylate) (PMMA) and montmorillonite
    Vasiliu, E
    Wang, CS
    Vaia, RA
    NANOPHASE AND NANOCOMPOSITE MATERIALS IV, 2002, 703 : 243 - 248
  • [29] FABRICATION OF ELECTRICALLY CONDUCTIVE LANGMUIR-BLODGETT MULTILAYER FILMS OF POLYANILINE
    CHEUNG, JH
    RUBNER, MF
    THIN SOLID FILMS, 1994, 244 (1-2) : 990 - 994
  • [30] Chitin Nanofibers/Epoxy Resin Optically Transparent Nanocomposite Films
    Shao, Xu
    Li, Dagang
    Li, Aijun
    Gu, Wenbiao
    PROGRESS IN MATERIALS AND PROCESSES, PTS 1-3, 2013, 602-604 : 1479 - 1483