Dynamics of social contagions with local trend imitation

被引:18
|
作者
Zhu, Xuzhen [1 ]
Wang, Wei [2 ]
Cai, Shimin [3 ,4 ,5 ,6 ]
Stanley, H. Eugene [5 ,6 ]
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Networking & Switching Technol, Beijing 100876, Peoples R China
[2] Sichuan Univ, Cybersecur Res Inst, Chengdu 610065, Sichuan, Peoples R China
[3] Univ Elect Sci & Technol China, Web Sci Ctr, Chengdu 610054, Sichuan, Peoples R China
[4] Univ Elect Sci & Technol China, Big Data Res Ctr, Chengdu 610054, Sichuan, Peoples R China
[5] Boston Univ, Ctr Polymer Studies, Boston, MA 02215 USA
[6] Boston Univ, Dept Phys, 590 Commonwealth Ave, Boston, MA 02215 USA
来源
SCIENTIFIC REPORTS | 2018年 / 8卷
基金
中国国家自然科学基金;
关键词
D O I
10.1038/s41598-018-25006-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Research on social contagion dynamics has not yet included a theoretical analysis of the ubiquitous local trend imitation (LTI) characteristic. We propose a social contagion model with a tent-like adoption probability to investigate the effect of this LTI characteristic on behavior spreading. We also propose a generalized edge-based compartmental theory to describe the proposed model. Through extensive numerical simulations and theoretical analyses, we find a crossover in the phase transition: when the LTI capacity is strong, the growth of the final adoption size exhibits a second-order phase transition. When the LTI capacity is weak, we see a first-order phase transition. For a given behavioral information transmission probability, there is an optimal LTI capacity that maximizes the final adoption size. Finally we find that the above phenomena are not qualitatively affected by the heterogeneous degree distribution. Our suggested theoretical predictions agree with the simulation results.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] An Investigation into the Trend Stationarity of Local Characteristics in Media and Social Networks
    Sidorov, Sergei
    Mironov, Sergei
    Grigoriev, Alexey
    Tikhonova, Sophia
    [J]. SYSTEMS, 2022, 10 (06):
  • [42] Impact of contact preference on social contagions on complex networks
    Han, Lilei
    Lin, Zhaohua
    Tang, Ming
    Zhou, Jie
    Zou, Yong
    Guan, Shuguang
    [J]. PHYSICAL REVIEW E, 2020, 101 (04)
  • [43] Social contagions with communication channel alternation on multiplex networks
    Wang, Wei
    Tang, Ming
    Stanley, H. Eugene
    Braunstein, Lidia A.
    [J]. PHYSICAL REVIEW E, 2018, 98 (06)
  • [44] Clustering determines the dynamics of complex contagions in multiplex networks
    Zhuang, Yong
    Arenas, Alex
    Yagan, Osman
    [J]. PHYSICAL REVIEW E, 2017, 95 (01)
  • [45] Modeling complex social contagions in big data era
    Ding, Xuyang
    Wu, Zhangjian
    Chen, Wantao
    Liu, Ying
    Xie, Ying
    Cai, Shiming
    [J]. 2017 IEEE 2ND ADVANCED INFORMATION TECHNOLOGY, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (IAEAC), 2017, : 830 - 834
  • [46] Emergence of hysteresis loop in social contagions on complex networks
    Su, Zhen
    Wang, Wei
    Li, Lixiang
    Xiao, Jinghua
    Stanley, H. Eugene
    [J]. SCIENTIFIC REPORTS, 2017, 7
  • [47] Social contagions on time-varying community networks
    Liu, Mian-Xin
    Wang, Wei
    Liu, Ying
    Tang, Ming
    Cai, Shi-Min
    Zhang, Hai-Feng
    [J]. PHYSICAL REVIEW E, 2017, 95 (05)
  • [48] Emergence of hysteresis loop in social contagions on complex networks
    Zhen Su
    Wei Wang
    Lixiang Li
    Jinghua Xiao
    H. Eugene Stanley
    [J]. Scientific Reports, 7
  • [49] Local matching dynamics in social networks
    Hoefer, Martin
    [J]. INFORMATION AND COMPUTATION, 2013, 222 : 20 - 35
  • [50] Local Matching Dynamics in Social Networks
    Hoefer, Martin
    [J]. Automata, Languages and Programming, ICALP, Pt II, 2011, 6756 : 113 - 124