SUBSPACE METHODS FOR COMPUTING THE PSEUDOSPECTRAL ABSCISSA AND THE STABILITY RADIUS

被引:28
|
作者
Kressner, Daniel [1 ]
Vandereycken, Bart [2 ]
机构
[1] Ecole Polytech Fed Lausanne, MATHICSE, ANCHP, CH-1015 Lausanne, Switzerland
[2] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
关键词
eigenvalue problem; pseudospectra; spectral abscissa; stability radius; subspace acceleration; complex approximation; H-INFINITY-NORM; ALGORITHM; MATRIX; APPROXIMATION; OPTIMIZATION; COMPUTATION; DISTANCE; SYSTEMS;
D O I
10.1137/120869432
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The pseudospectral abscissa and the stability radius are well-established tools for quantifying the stability of a matrix under unstructured perturbations. Based on first-order eigenvalue expansions, Guglielmi and Overton [SIAM J. Matrix Anal. Appl., 32 (2011), pp. 1166-1192] recently proposed a linearly converging iterative method for computing the pseudospectral abscissa. In this paper, we propose to combine this method and its variants with subspace acceleration. Each extraction step computes the pseudospectral abscissa of a small rectangular matrix pencil, which is comparably cheap and guarantees monotonicity. We observe local quadratic convergence and prove local superlinear convergence of the resulting subspace methods. Moreover, these methods extend naturally to computing the stability radius. A number of numerical experiments demonstrate the robustness and efficiency of the subspace methods.
引用
收藏
页码:292 / 313
页数:22
相关论文
共 50 条
  • [41] Stability and Multiscroll Attractors of Control Systems via the Abscissa
    Diaz-Gonzalez, Edgar-Cristian
    Aguirre-Hernandez, Baltazar
    Antonio Lopez-Renteria, Jorge
    Campos-Canton, Eric
    Arturo Loredo-Villalobos, Carlos
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2017, 2017
  • [42] Pseudospectral methods for Nagumo equation
    Dehghan, Mehdi
    Fakhar-Izadi, Farhad
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, 2011, 27 (04) : 553 - 561
  • [43] Pseudospectral methods for pricing options
    Suh, Sangwon
    QUANTITATIVE FINANCE, 2009, 9 (06) : 705 - 715
  • [44] Computation of pseudospectral abscissa for large-scale nonlinear eigenvalue problems (vol 37, pg 1831, 2017)
    Meerbergen, Karl
    Mengi, Emre
    Michiels, Wim
    Van Beeumen, Roel
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2018, 38 (03) : 1598 - 1598
  • [45] GLOBAL PROPERTIES OF PSEUDOSPECTRAL METHODS
    SOLOMONOFF, A
    TURKEL, E
    JOURNAL OF COMPUTATIONAL PHYSICS, 1989, 81 (02) : 239 - 276
  • [46] Pseudospectral methods versus FDTD
    Georgakopoulos, SV
    Balanis, CA
    Renaut, R
    IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM, VOLS 1-4: TRANSMITTING WAVES OF PROGRESS TO THE NEXT MILLENNIUM, 2000, : 1506 - 1509
  • [47] Computing the numerical radius
    Watson, GA
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1996, 234 : 163 - 172
  • [48] Pseudospectral Continuation for Aeroelastic Stability Analysis
    Pons, Arion
    JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME, 2022, 144 (04):
  • [49] SPEEDING UP KRYLOV SUBSPACE METHODS FOR COMPUTING f(A)b VIA RANDOMIZATION\ast
    Cortinovis, Alice
    Kressner, Daniel
    Nakatsukasa, Yuji
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2024, 45 (01) : 619 - 633
  • [50] Computing mode shapes of fluid-structure systems using subspace iteration methods
    Arjmandi, S. A.
    Lotfi, V.
    SCIENTIA IRANICA, 2011, 18 (06) : 1159 - 1169