Electrospun Granular Hollow SnO2 Nanofibers Hydrogen Gas Sensors Operating at Low Temperatures

被引:168
|
作者
Ab Kadir, Rosmalini [1 ,2 ]
Li, Zhenyu [3 ]
Sadek, Abu Z. [3 ]
Rani, Rozina Abdul [1 ]
Zoolfakar, Ahmad Sabirin [1 ,2 ]
Field, Matthew R. [4 ]
Ou, Jian Zhen [1 ]
Chrimes, Adam F. [1 ]
Kalantar-zadeh, Kourosh [1 ]
机构
[1] RMIT Univ, Sch Elect & Comp Engn, Melbourne, Vic 3001, Australia
[2] Univ Teknol MARA, Fac Elect Engn, Shah Alam 40450, Malaysia
[3] Deakin Univ, Inst Frontier Mat, Waurn Ponds, Vic 3216, Australia
[4] RMIT Univ, Sch Appl Sci, Melbourne, Vic 3001, Australia
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2014年 / 118卷 / 06期
关键词
H-2 SENSING PROPERTIES; METAL-OXIDE SENSORS; TIN OXIDE; THIN-FILMS; HYDROTHERMAL SYNTHESIS; SENSITIVE PROPERTIES; ETHANOL; CO; PD; NANOPARTICLES;
D O I
10.1021/jp411552z
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this paper, we present H-2 gas sensors based on hollow and filled, well-aligned electrospun SnO2 nanofibers, operating at a low temperature of 150 degrees C. SnO2 nanofibers with diameters ranging from 80 to 400 nm have been successfully synthesized in which the diameter of the nanofibers can be controlled by adjusting the concentration of polyacrylonitrile in the solution for electrospinning. The presence of this polymer results in the formation of granular walls for the nanofibers. We discussed the correlation between nanofibers morphology, structure, oxygen vacancy contents and the gas sensing performances. X-ray photoelectron spectroscopy analysis revealed that the granular hollow SnO2 nanofibers, which show the highest responses, contain a significant number of oxygen vacancies, which are favorable for gas sensor operating at low temperatures.
引用
收藏
页码:3129 / 3139
页数:11
相关论文
共 50 条
  • [41] SnO2 BASED CERAMICS FOR GAS SENSORS
    Busuioc, Andrei-Dan
    Enuta, Ramona
    Stoleriu, Stefania
    Visan, Teodor
    REVISTA ROMANA DE MATERIALE-ROMANIAN JOURNAL OF MATERIALS, 2017, 47 (04): : 419 - 424
  • [42] Fabrication and ethanol-sensing properties of micro gas sensor based on electrospun SnO2 nanofibers
    Zhang, Yang
    He, Xiuli
    Li, Jianping
    Miao, Zhenjiang
    Huang, Feng
    SENSORS AND ACTUATORS B-CHEMICAL, 2008, 132 (01) : 67 - 73
  • [43] A hall effect hydrogen-selective gas sensor based on SnO2 nanowires operating at low temperature
    J. Y. Lin
    X. L. He
    A. J. Zhang
    S. H. Huang
    Z. X. Chen
    Journal of Materials Science: Materials in Electronics, 2019, 30 : 20696 - 20702
  • [44] A hall effect hydrogen-selective gas sensor based on SnO2 nanowires operating at low temperature
    Lin, J. Y.
    He, X. L.
    Zhang, A. J.
    Huang, S. H.
    Chen, Z. X.
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2019, 30 (23) : 20696 - 20702
  • [45] Formaldehyde gas sensors based on SnO2/ZSM-5 zeolite composite nanofibers
    Sun, Yanhui
    Wang, Jing
    Du, Haiying
    Li, Xiaogan
    Wang, Chen
    Hou, Tengyue
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 868
  • [46] Measurement of hydrogen permeation into steel by using hollow bolt and SnO2 gas sensor
    Hayakawa, Y
    Komoda, M
    Ono, A
    SENSORS AND ACTUATORS B-CHEMICAL, 1997, 42 (02) : 131 - 136
  • [47] Measurement of hydrogen permeation into steel by using hollow bolt and SnO2 gas sensor
    Tokyo Natl Research Inst of Cultural, Properties, Tokyo, Japan
    Sensors and Actuators, B: Chemical, 1997, B42 (02): : 131 - 136
  • [48] Depth profile analysis of surface modified SnO2 gas sensors in a hollow cathode discharge
    Djulgerova, RB
    Popova, LI
    Mihailov, VI
    Beshkov, GD
    Szytula, A
    Gondek, L
    Petrovic, ZL
    SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY, 2004, 59 (06) : 905 - 908
  • [49] Fast-response and high sensitivity gas sensors based on SnO2 hollow spheres
    Tan, Yu
    Li, Chengchao
    Wang, Yong
    Tang, Jianfeng
    Ouyang, Xicheng
    THIN SOLID FILMS, 2008, 516 (21) : 7840 - 7843
  • [50] Electrospun ZnO–SnO2 heterojunction belts for hydrogen sensing
    Peresi Majura Bulemo
    Journal of Materials Science: Materials in Electronics, 2023, 34